Journal Publications

  • 2020

    1. Interfacial Perpendicular Magnetic Anisotropy in Magnetic Tunnel Junctions Comprising CoFeB and FeNiSiB Layers
      Electronic Materials Letters 16 [doi: 10.1007/s13391-019-00183-2]

    2. Strategy to control magnetic coercivity by elucidating crystallization pathway-dependent microstructural evolution of magnetite mesocrystals
      Nature Communications 11 [doi: 10.1038/s41467-019-14168-0]

    3. Spin-Orbit Torque Driven Magnetization Switching and Precession by Manipulating Thickness of CoFeB/W Heterostructures
      Advanced Electronic Materials 6 [doi: 10.1002/aelm.201901004]

    4. Thickness and composition-dependent spin-orbit torque behaviors in perpendicularly magnetized Ta/W (t)/CoFeB and Ta1-xWx/CoFeB junction structures
      Journal of Alloys and Compounds 823 [doi: 10.1016/j.jallcom.2020.153744]

    5. Design of Magnetic-Plasmonic Nanoparticle Assemblies via Interface Engineering of Plasmonic Shells for Targeted Cancer Cell Imaging and Separation
      Small 2001103 [doi: 10.1002/smll.202001103]

  • 2019

    1. Microwave absorption properties of magnetite multi-granule nanocluster–multiwall carbon nanotube composites
      Functional Materials Letters 12 [doi: 10.1142/S1793604719500115]

    2. Synthesis and Characterization of Magnetic–Luminescent Fe3O4–CdSe Core–Shell Nanocrystals
      Electronic Materials Letters 15 [doi: 10.1007/s13391-018-0097-z]

    3. Application of radially grown ZnO nanowires on poly-L-lactide microfibers complexed with a tumor antigen for cancer immunotherapy
      Nanoscale 11 [doi: 

    4. Quantitative Analysis on Cellular Uptake of Clustered Ferrite Magnetic Nanoparticles
      Electronic Materials Letters [doi:]

    5. Properties of a rare earth free L10-FeNi hard magnet developed through annealing of FeNiPC amorphous ribbons
      Current Applied Physics 19 
      [doi: 10.1016/j.cap.2019.03.001]

    6. Metallic Fe-Au barcode nanowires as a simultaneous T cell capturing cytokine sensing platform for immunoassay at the single-cell level

      ACS Applied Material Interfaces 11 [doi: 10. 1021/acsami. 9b06535] 

    7. Fabrication of graphene-magnetite multi-granule nanocluster composites for microwave absorption application

      Journal of Composite Materials 53 [doi: 10.1177/0021998319853032


    8. Application of ZnO-based nanocomposites for vaccines and cancer immunotherapy

      Pharmaceutics 11 [doi: 10.3390/pharmaceutics11100493



  • 2018

    1. Electrochemical synthesis of CuIn(1-x)GaxSe2 nanowires with controlled stoichiometry
      Materials Letters 211 [doi:

    2. Role of the heavy metal's crystal phase in oscillations of perpendicular magnetic anisotropy and the interfacial Dzyaloshinskii-Moriya interaction in W/Co-Fe-B/MgO films
      Physical Review Applied 9 [doi: 10.1103/PhysRevApplied.9.064005]

    3. Formation of high aspect ratio fused silica nanowalls by fluorine-based deep reactive ion etching
      Nano-Structures & Nano-Objects 15 [doi: 

    4. MnO2 Nanowire−CeO2 Nanoparticle Composite Catalysts for the Selective Catalytic Reduction of NOx with NH3
      ACS Applied Materials & Interfaces 10 [doi: 10.1021/acsami.8b09605 ]

    5. Microstructural evolution and electrical resistivity of nanocrystalline W thin films grown by sputtering
      Materials Characterization 145 [doi: 10.1016/j.matchar.2018.09.016]

    6. Fabrication of three-dimensional electrical patterns by swollen-off process: An evolution of the lift-off process
      Current Applied Physics 18 [doi: 10.1016/j.cap.2018.06.001]

    7. Magnetization reversal of ferromagnetic nanosprings affected by helical shape
      Nanoscale 10 [doi: 10.1039/c8nr05655b]

  • 2017

    1. CoFeSiBePd multilayers and co-deposited alloy films exhibiting perpendicular magnetic anisotropies after heat treatment up to 500
      Acta Materialia 125 [doi:10.1016/j.actamat.2016.11.068

    2. Perpendicular Magnetic Anisotropy and Interfacial Dzyaloshinskii-Moriya Interaction in Pt/CoFeSiB Structures
      IEEE MAGNETICS LETTERS 8, 3100504 [doi: 10.1109/LMAG.2016.2617304]



    3. Radio frequency-mediated local thermotherapy for destruction of pancreatic tumors using Ni–Au core–shell nanowires
      Nanotechnology 28, 03LT01 [doi: 10.1088/1361-6528/28/3/03LT01]



    4. Synthesis of Co nanotubes by nanoporous template-assisted electrodeposition via the incorporation of vanadyl ions

      CHEMICAL COMMUNICATIONS 53  [doi: 0.1039/c6cc09843f

    5. Eradication of Plasmodium falciparum from Erythrocytes by Controlled Reactive Oxygen Species via Photodynamic Inactivation Coupled with Photofunctional Nanoparticles
      ACS APPLIED MATERIALS & INTERFACES 9 [doi: 10.1021/acsami.6b16793]

    6. Annealing effect on the magnetic properties of cobalt-based amorphous alloys
      [doi: 10.1016/j.cap.2017.01.025]

    7. Spontaneous nucleation and topological stabilization of skyrmions in magnetic nanodisks with the interfacial Dzyaloshinskii–Moriya interaction
      Journal of Magnetism and Magnetic Materials 429 [doi: 10.1016/j.jmmm.2017.01.038]

    8. Enhancing current-induced torques by abutting additional spin polarizer layer to nonmagnetic metal layer
      Scientific Reports 7, 45669 [doi: 10.1038/srep45669]

    9. Synthesis, Microstructure, and Physical Properties of Metallic Barcode Nanowires
      METALS AND MATERIALS INTERNATIONAL 23 [doi: 10.1007/s12540-017-7071-4]

    10. Functionalization of 3D printed micro-containers with Ni-Au core-shell nanowires
      1600887 [doi: 10.1002/pssa.201600887]

    11. Efficient intracellular delivery of biomacromolecules employing clusters of zinc oxide nanowires
      Nanoscale 9 [doi: 10.1039/c7nr05219g]

    12. Photonic Reactions Leading to Fluorescence in a Polymeric System Induced by the Photothermal Effect of Magnetite Nanoparticles Using a 780 nm Multiphoton Laser
      Small 13, UNSP 1700897 [doi: 10.1002/smll.201700897]

    13. Effect of the magnetic core size of amino-functionalized Fe3O4-mesoporous  SiO2 core-shell nanoparticles on the removal of heavy metal ions
      Colloids and Surfaces A 531 [doi: 10.1016/j.colsurfa.2017.07.086]

    14. Magnetically soft FeCoTiZrB alloys with high saturation magnetization
      Intermetallics 90 [doi: 10.1016/j.intermet2017.07.020]

    15. Crystallographic Orientation and Microstructure-Dependent Magnetic Behaviors in Arrays of Ni Nanowires
      IEEE TRANSACTIONS ON MAGNETICS 53, 2004004 [doi: 10.1109/TMAG.2017.2692798]

    16. Magnetic Particle Spectrometry of Fe3O4 Multi-Granule Nanoclusters

      IEEE TRANSACTIONS ON MAGNETICS 53, 5101004 [doi: 10.1109/TMAG.2017.2701904]

    17. Microstructure and Magnetic Properties of CoFe Nanowires and Helical Nanosprings

      IEEE TRANSACTIONS ON MAGNETICS 53, 2004104 [doi: 10.1109/TMAG.2017.2700294]

  • 2016

    1. Optimization of Fe/Co ratio in FeCoTiZnB alloys for high saturation magnetization
      Current Appllied Physics 16, 515  [doi: 10.1016/j.cap.2016.02.005]

    2. Synthesis of Fe doped ZnO nanowire arrays that detect formaldehyde gas
      Journal of Nanoscience and Nanotechnology 16, 4814 [doi: 10.1166/jnn.2016.12264]

    3. Ultrahigh tensile strength nanowires with a Ni/Ni-Au multilayer nanocrystalline structure
      Nano Letters ,  [doi: 10.1021/acs.nanolett.6b00275]

    4. Catalytic activity of vanadium oxide catalysts prepared by electrodeposition for the selective catalytic reduction of nitrogen oxides with ammonia
      Reac. Kinet. Mech. Cat 118, 633 [doi: 10.1007/s11144-016-101-0]

    5. Localized electroporation effect on adherent cells in modified electric cell–substrate impedance sensing circuits
      Applied Physics Express 9, 107001, [doi: 10.7567/APEX.9.107001]

    6. Size-dependent changeover in magnetization reversal mode of self-assembled onedimensional chains of spherical Fe3O4 nanoparticles
      Japanese Journal of Applied Physics 55, 100303 [doi: 10.7567/JJAP.55.100303]

    7.  White-light-emitting magnetite nanoparticle–polymer composites: photonic reactions ofmagnetic multi-granule nanoclusters as photothermal agents†
      Nanoscale 8, 17136 [doi: 10.1039/c6nr04408e]

    8. Effect of Silicon Additions on the Magnetic Properties for Fe-Based Alloys
      Journal of Nanoscience and Nanotechnology 16, 11210 [doi: 10.1166/jnn.2016.13479]

    9. Generation of protective immunity against Orientia tsutsugamushi infection by immunization with a zinc oxide nanoparticle combined with ScaA antigen
      Journal of Nanobiotechnology 14, 76 [doi: 10.1186/s12951-016-0229-2]

    10. 3 Dimensional-Printed Micro-Container with Graphene Current Collector and Manganese Oxide Thin-Film as Cathodes of Li-Batteries
      Nanoscience and Nanotechnology Letters 8, 1095 [doi: 10.1166/nnl.2016.2273]




  • 2015

  1. Functional Manipulation of Dendritic Cells by Photo-switchable Generation of Intracellular Reactive Oxygen Species
    ACS Chemical Biology 10, 757 [doi: 10.1021/cb5009124]

  2. The toxicity and distribution of iron oxide–zinc oxide core-shell nanoparticles in C57BL/6 mice after repeated subcutaneous administration
    J. Appl. Toxicol 35, 593 [doi:

  3. Fabrication of planar and curved polyimide membranes with a pattern transfer method using ZnO nanowire arrays as templates
    Materials Letters 149, 109 [doi: 10.1016/j.matlet.2015.02.114]

  4. Magnetic multi-granule nanoclusters: A model system that exhibits universal size effect of magnetic coercivity
    Scientific reports 5, 12135 [doi: 10.1038/srep12135

  5. Microstructure and magnetic properties of LaSrMnO nanoparticles and their application to cardiac immunoassay
    IEEE Transactions on Magnetics 51, 5101304 [doi: 10.1109/TMAG.2015.2438021 

  6. Current fluctuation of electron and hole carriers in multilayer WSe2 field effect transistors
    Applied Physics Letters 107, 242102 [doi:]





  • 2014

  1. Magnetic Anosotropy Evolution in CoFe/Au Barcode Nannowire Arrays
    IEEE Trans. Magn. 50 [doi: 10.1109/TMAG.2013.2279278]

  2. Phase dependent magnetic properties of Ni-Au alloy nanowires
    Mater. Lett. 116. 86 [doi: 10.1016/j.matlet.2013.10.104]

  3. Isolation of DNA using magnetic nanoparticles coated with dimercaptosuccinic acid
    Anal. Biochem. 447, 144 [doi: 

  4. Efficiency of genomic DNA extraction dependent on the size of magnetic nanoclusters
    J. Appl. Phys. 115, 17B512-1 [doi: 

  5. Synthesis and magnetic properties of size-tunable MnxFe3-xO4 ferrite nanoclusters
    J. Appl. Phys. 115, 17B512-1 [doi: 10.1063/1.4864736]

  6. Gate-controlled spin-orbit coupling in InAs/InGaAs quantum well structures
    J. Nanosci. Nanotech. 14, 5212 [doi: 10.1166/jnn.20148464]
  7. Effect of compositional variation on the soft magnetic properties of Fe(87-x-y)CoxTi7Zr6By amorphous ribbons
    Curr. Appl. Phys. 14, 685 [doi: 10.1016/j.cap.2014.02.009

  8. Self-assembly of fluorescent and magnetic Fe3O4@coordination polymer nanochains
    Chem. Commun. 50, 7617 [doi: 10.1039/C4CC03217A

  9. Magnetic nanodiscs fabricated from multilayered nanowires
    J. Nanosci. Nanotech. 14, 7923 [doi: 10.1166/jnn.2014.9437]

  10. Immunochromatographic assay of hepatitis B surface antigen using magnetic nanoparticles as signal
    IEEE Trans. Magn. 50, 5102104 [doi: 10.1109/TMAG.2014.2324613]

  11. Magnetic vortex state and multi-domain pattern in electrodeposited hemispherical nanogranular nickel films
    J. Magn. Magn. Mater. 371, 149 [doi: 10.1016/j.jmmm.2014.07.042]

  • 2013

  1. Tunable synthesis and multifunctionalities of Fe3O4-ZnO hybrid core-shell nanocrystals
    Mater. Res. Bull. 48, 551-558 [doi: 10.1016/j.materresbull.2012.11.051]

  2. Solid-state phase transformation mechanism for formation of magnetic multi-granule nanocluster
    RSC Adv. 3, 3631-3637 [doi: 10.1039/C3RA21639J]
  3. ZnO-Ag Composite Nanocrystals from Nanoemulsion: Synthesis, Magnetic, and Optical Properties
    Appl. Phys. Express 6 (6), 063003-1 [doi: 10.7567/APEX.6.063005]
  4. Dynamic Microcontainers as Microvacuums for Collecting Nanomaterials After Clinical Treatments
    IEEE Trans. Magn. 49 (7), 3464-3467 [doi: 
  5. Growth behavior and field emission property of ZnO nanowire arrays on Au and Ag films
    AIP Adv. 3 (9), 092132-1 [doi: 
  6. Synthesis, microstructure, and magnetic properties of monosized MnxZnyFe3x − yOferrite nanocrystals
    Nanoscale Res. Lett. 8, 530-1 [doi: 
  • 2012

  1. Control of Magnetic Domains in Co/Pd Multilayered Nanowires with Perpendicular Magnetic Anisotropy
    J. Nanosci. Nanotechno. 12, 428 [doi: 10.1166/jnn.2012.5404]
  2. Magnetically driven spinning nanowires as effective materials for eradicating living cells
    J. Appl. Phys. 111 (7), 07B329-1 [doi: 10.1063/1.3678437]
  3. Magnetic NiFe/Au barcode nanowires with self-powered motion
    J. Appl. Phys. 111 (7), 07B513-1 [doi: 10.1063/1.3676062]
  4. Magnetic and optical properties of monosized Eu-doped ZnO nanocrystals from nanoemulsion
    J. Appl. Phys. 111 (7), 07B523-1 [doi: 10.1063/1.3676422]
  5. Effects of notch shape on the magnetic domain wall motion in nanowires with in-plane or perpendicular magnetic anisotropy
    J. Appl. Phys. 111 (7), 07D123-1 [doi: 10.1063/1.3677340]
  6. Photosensitizer and vancomycin-conjugated novel multifunctional magnetic particles as photoinactivation agent for selective killing of pathogenic bacteria
    Chem. Commun. 48 (38), 4591 [doi: 10.1039/C2CC17766H]
  7. Transport and switching behaviors in magnetic tunnel junctions consisting of CoFeB/FeNiSiB hybrid free layers
    J. Appl. Phys. 111, 093913-1 [doi: 10.1063/1.4709738]
  8. Magnetic domain wall motion by current injection in CoPt nanowires consisting of notches
    Solid State Commun. 152 (12) 1004 [doi: 10.1016/j.ssc.2012.03.004]
  9. Domain wall configuration and magneto-transport properties in dual spin-valve with nanoconstriction
    Appl. Phys. Lett. 100 (24), 242409-1 [doi: 10.1063/1.4729126]
  10. Morphology and electrical properties of high aspect ratio ZnO nanowires grown by hydrothermal method without repeated batch process
    Appl. Phys. Lett. 101 (8), 083905-1~4 [doi: 10.1063/1.4748289]
  11. One-pot synthesis and characterization of bifunctional Au-Fe3O4 hybrid core-shell nanoparticles
    J. Alloy Compd. 537, 60 [doi: 10.1016/j.jallcom.2012.05.062]
  12. Compositional dependence of magnetic properties in CoFe/Au nanobarcodes
    Appl. Phys. Express. 5, 103003-1~3 [doi: 10.1143/APEX.5.103003]
  13. Structural and magnetic properties of epitaxial Co2FeAl films grown on MgO substrates for different growth temperatures
    Acta Mater. 60, 6714-6719 [doi: 10.1016/j.actamat.2012.08.041]
  14. Dimensional dependence of magnetic properties in arrays of CoFe/Au barcode nanowire
    IEEE Trans. Magn. 48 (11), 3929~3932 [doi: 10.1109/TMAG.2012.2202101]
  15. Magnetotransport properties of dual MgO barrier magnetic tunnel junctions consisting of CoFeB/FeNiSiB/CoFeB free layers
    Appl. Phys. Lett. 101, 232401-1~4 [doi: 10.1063/1.4768931]
  • 2011

  1. Tocopheryl oligochitosan-based self assembling oligomersomes for siRNA delivery
    Biomaterials 32(3), 849 [doi: 10.1016/j.biomaterials.2010.09.027]
  2. Phospholipid-driven long-range ordering of Fe3O4 nanoparticles
    Appl, Surf. Sci. 257 (7), 3128 [doi: 10.1016/j.apsusc.2010.10.128]
  3. Non-aqueous synthesis of water-dispersible Fe3O4-Ca3(PO4)2 core-shell nanoparticles
    Nanotechnology 22(5), 055701 [doi: 10.1088/0957-4484/22/5/055701]
  4. Domain wall generation and propagation in amorphous ferromagnetic NiFeSiB film confirmed by magneto-optical indicator film method
    Thin Solid Films 519(10), 3301 [doi: 10.1016/j.tsf.2010.12.029]
  5. Resistive switching behavior in a Ni/Ag2Se/Ni nanowire 
    Appl. Phys. A 102(4), 897 [doi: 10.1007/s00339-011-6319-y]
  6. Labeling of macrophage cell using biocompatible magnetic nanoparticles 
    J. Appl. Phys. 109(7), 07B309-1 [doi: 10.1063/1.3563073]
  7. Nonaqueous synthesis and magnetic properties of ZnFe2O4 nanocrystals with narrow size distributions 
    J. Appl. Phys. 109(7), 07B511-1 [doi: 10.1063/1.3540407]
  8. Effects of Co addition on magneto-transport properties of magnetic tunnel junction consisting of CoFeB or CoFeSiB free layer 
    J. Appl. Phys. 109(7), 07D346-1 [doi: 10.1063/1.3565404]
  9. Influence of interface state in Fe/MgO/Fe magnetic tunnel junction system: C modified interfaces-a first principle study 
    J. Appl. Phys. 109(8), 083714-1 [doi: 10.1063/1.3575337]
  10. Microstructural Changes of Epitaxial Fe/MgO Layers grown on InAs(001) Substrates 
    Cryst. Growth Des.11, 2889 [doi: 10.1021/cg200051k]
  11. Ni-Au core-shell nanowires: Synthesis, microstructures, biofunctionalization, and the toxicologic effects on pancreatic cancer cells
    J. Mater. Chem. 21 (32), 12089 [doi: 10.1039/c1jm11143d]
  12. Effect of interparticle interactions and size dispersion in magnetic nanoparticle assemblies: a static and dynamic study
    Appl. Phys. Lett. 99, 062506-1 [doi: 10.1063/1.3624833]
  13. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy
    Nature Nanotechnology 6, 675 [doi: 10.1038/NNANO.2011.149]
  14. Magnetotransport and trapping of magnetic domain walls in spin valves with nanoconstrictions
    IEEE Trans. Magn. 47 (10), 2436 [doi: 10.1109/TMAG.2011.2158400]
  15. Lithium powder anodes utilizing microcage structures in lithium secondary cells
     J. Ceram. Process. Res. 12 (S2), s93 [doi: -]
  16. Fabrication and characterization of RF nanoantenna on a nanoliter-scale 3D microcontainer
    Nanotechnology 22 (45), 455303-1 [doi: 10.1088/0957-4484/22/45/455303]
  • 2010

  1. Inverse Hall-Petch relation of nanostructured Ni films prepared by electrodeposition
    Curr. Appl. Phys. 10(1), 57 [doi: 10.1016/j.cap.2009.03.026]
  2. Insertion loss characteristics of passive devices fabricated on anodized aluminum oxide layers formed on Si substrates
    Sensor. Actuat. A:Phys. 157(1), 32 [doi: 10.1016/j.sna.2009.11.021]
  3. Effects of Co addition on microstructure and magnetic properties of ferromagnetic CoFeSiB alloy films
    Acta Materialia 58(8), 2836 [doi: 10.1016/j.actamat.2010.01.006]
  4. Numerical simulations of collective magnetic properties and magnetoresistance in 2D ferromagnetic nanoparticle arrays
    J. Phys. D: Appl. Phys. 43(16), 165002-1 [doi: 10.1088/0022-3727/43/16/165002]
  5. CPP Transport Properties of Ni/Ru and Co90Fe10/Cu Interfaces
    IEEE Trans. Magn. 46(6), 1374 [doi: 10.1109/TMAG.2010.2045223]
  6. Observation of Suppressed Interdiffusion in FeRh/FePt-Ta Bilayer Thin Films
    IEEE Trans. Magn. 46(6), 2104 [doi: 10.1109/TMAG.2010.2042148]
  7. I-V characteristics of a vertical single Ni nanowire by voltage-applied atomic force microscopy
    Curr. Appl. Phys. 10(4), 1037 [doi: 10.1016/j.cap.2009.12.036]
  8. The synthesis and characterization of polymer-coated FeAu multifunctional nanoparticles
    Nanotechnology 21(33), 335602-1 [doi: 10.1088/0957-4484/21/33/335602]
  9. Fabrication of monolithic polymer nanofluidic channels using nanowires as sacrificial templates
    Nanotechnology 21(42), 425302-1 [doi: 10.1088/0957-4484/21/42/425302]
  10. Current induced domain wall motion in nanostripes with perpendicular magnetic anisotropy
    J. Magn. Magn. Mater. 322(21), 3601 [doi: 10.1016/j.jmmm.2010.05.047]
  • 2009

  1. Monosized Core-Shell Fe3O4(Fe)/Au Multifunctional Nanocrystals
    J. Nanosci. Nanotechnol. 9(2), 754 [doi: 10.1166/jnn.2009.C018]
  2. Dense stripe domains in a nanocrystalline CoFeSiB thin film
    Curr. Appl. Phys. 9(3), 688 [doi: 10.1016/j.cap.2008.06.009]
  3. Synthesis and magnetic properties of multifunctional CoPtAu nanoparticles
    J. Appl. Phys. 105(7), 07B527-1 [doi: 10.1063/1.3072750]
  4. Structural and magnetic properties of chemically synthesized Fe doped ZnO
    J. Appl. Phys. 105(7), 07C520-1 [doi: 10.1063/1.3073933]
  5. Spin wave quantization in continuous film with stripe domains
    J. Appl. Phys. 105(7), 07D544-1 [doi: 10.1063/1.3072757]
  6. A highly sensitive and selective diagnostic assay based on virus nanoparticles
    Nat. Nanotechnol. 4, 259 [doi: 10.1038/nnano.2009.38]
  7. Trnsport Properties of Magnetic Tunnel Junctions Comprising NiFeSiB/CoFeB Hybrid Free Layers
    IEEE Trans. Magn. 45(6), 2364 [doi: 10.1109/TMAG.2009.2018574]
  8. Effect of Interface Roughness on Magnetoresistance and Magnetization Switching in Magnetic Tunnel Junction
    IEEE Trans. Magn. 45(6), 2396 [doi: 10.1109/TMAG.2009.2018586]
  9. Giant Diamagnetism in AuFe Nanoparticles
    IEEE Trans. Magn. 45(6), 2442 [doi: 10.1109/TMAG.2009.2018604]
  10. Fabrication of Multifunctional Au Doped CoPt Nanowires
    IEEE Trans. Magn. 45(6), 2471 [doi: 10.1109/TMAG.2009.2018653]
  11. Molecular dynamics simulation study of deposition and annealing behaviors of Al atoms on Cu surface
    J. Appl. Phys. 105(11), 114312-1 [doi: 10.1063/1.3142382]
  12. A sensitive method to detect Escherichia coli based on immunomagnetic separation and real-time PCR amplification of aptamers
    Biosens. Bioelectron. 24(12), 3550 [doi: 10.1016/j.bios.2009.05.010]
  13. Composition-dependent crystal structure and magnetism in nanocrystalline Co-rich alloy
    IEEE Trans. Magn. 45(10), 3862 [doi: 10.1109/TMAG.2009.2024540]
  14. Synthesis and magnetic properties of multifunctional Fe3O4-AuPt core-shell nanoparticles
    IEEE Trans. Magn. 45(10), 4041 [doi: 10.1109/TMAG.2009.2025667]
  15. Phase changeable silver selenide thin films fabricated by pulse electrodeposition
    Curr. Appl. Phys. 9(6), 1338 [doi: 10.1016/j.cap.2008.12.017]
  16. Inverted magnetoresistance in dual spin valve structures with a synthetic antiferromagnetic free layer
    Appl. Phys. Lett. 95(22), 222506-1 [doi: 10.1063/1.3266522]
  • 2008

  1. CoPt nanoparticles by a modified polyol process
    Colloid. Surface. A 313-314, 250 [doi: 10.1016/j.colsurfa.2007.04.105]
  2. Sub 5 nm Fe3O4 nanocrystals via coprecipitation method
    Colloid. Surface. A 313-314, 268 [doi: 10.1016/j.colsurfa.2007.04.108]
  3. Synthesis of monosized magnetic-optical AuFe alloy nanoparticles
    J. Appl. Phys. 103(7), 07D529-1 [doi: 10.1063/1.2837619]
  4. A Molecular Dynamics Study of the Deposition and the Diffusion Behaviors of Al on a Cu Surface
    J. Kor. Phy. Soc. 52(94), 1241 [doi: 10.3938/jkps.52.1241]
  5. Hyperthermia with Magnetic Nanowires for Inactivating Living Cells
    J. Nanosci. Nanotechnol. 8(5), 2323 [doi: doi:10.1166/jnn.2008.273]
  6. Synthesis of streptavidin-FITC-conjugated core-shell Fe3O4-Au nanocrystals and their application for the purification of CD4+ lymphocytes
    Biomaterials 29(29), 4003 [doi: 10.1016/j.biomaterials.2008.06.031]
  7. Structural and magnetic properties of amorphous and nanocrystalline CoFeSiB thin films
    IEEE Trans. Nanotechnol. 7(4), 409 [doi: 10.1109/TNANO.2008.926334]
  8. Bias voltage dependence of magnetic tunnel junctions comprising amorphous ferromagnetic CoFeSiB layer with double barriers
    Phys. Stat. Sol. 205(8), 1847 [doi: 10.1002/pssa.200723639]
  9. Magnetoresistance variation of magnetic tunnel junctions with NiFeSiB/CoFeB free layers depending on MgO tunnel barrier thickness
    IEEE Trans. Magn. 44(11), 2547 [doi: 10.1109/TMAG.2008.2003244]
  10. Magneto-transport characteristics of magnetic tunnel junction with a synthetic antiferromagnetic amorphous CoFeSiB free layer
    IEEE Trans. Magn. 44(11), 2598 [doi: 10.1109/TMAG.2008.2002383]
  11. Growth and magnetic properties of CoPtAu nanowires
    IEEE Trans. Magn. 44(11), 2726 [doi: 10.1109/TMAG.2008.2001500]
  12. Synthesis and characterization of Fe-FeOx core-shell nanowires
    IEEE Trans. Magn. 44(11), 3950 [doi: 10.1109/TMAG.2008.2001515]
  • 2007

  1. A study of the role of HBr and oxygen on the etch selectivity and the post-etch profile in a polysilicon/oxide etch using HBr/O2 based high density plasma for advanced DRAMs
    Mat. Sci. Semicon. Proc. 10(1), 41 [doi: 10.1016/j.mssp.2006.08.027]
  2. Characteristics of magnetic tunnel junctions comprising ferromagnetic amorphous NiFeSiB layers
    J. Magn. Magn. Mater. 310(2), 1929 [doi: 10.1016/j.jmmm.2006.10.762]
  3. Effect of field deposition and pore size on Co/Cu barcode nanowires by electrodeposition
    J. Magn. Magn. Mater. 310(2), 2420 [doi: 10.1016/j.jmmm.2006.10.809]
  4. Interfacial mixing in double-barrier magnetic tunnel junctions with amorphous ferromagnetic NiFeSiB layers
    J. Magn. Magn. Mater. 310(2), e638 [doi: 10.1016/j.jmmm.2006.10.683]
  5. One-pot polyol synthesis of monosize PVP-coated sub-5 nm Fe3O4 nanoparticles for biomedical applications 
    J. Magn. Magn. Mater. 310(2), e815 [doi: 10.1016/j.jmmm.2006.10.776]
  6. Domain wall width and velocity behaviors in notched magnetic devices
    J. Appl. Phys. 101(9), 09F504-1 [doi: 10.1063/1.2711166]
  7. Effects of Cu doping on the microstructure and magnetic properties of CoPt nanowires
    J. Appl. Phys. 101(9), 09K513-1 [doi: 10.1063/1.2710321]
  8. Iron-Gold Barcode Nanowires
    Angew. Chem. Int. Edit. 119(20), 3737 [doi: 10.1002/ange.200605136]
  9. Sub 5 nm magnetite nanoparticles: synthesis, microstructure, and magnetic properties
    Mater. Lett. 61(14-15), 3124 [doi: 10.1016/j.matlet.2006.11.032]
  10. Aging effect on the optoelectronic properties of a single ZnO nanowire
    Jpn. J. Appl. Phys. 46(7A), 4355 [doi: 10.1143/JJAP.46.4355]
  11. Fabrication of nano-porous structure on silicon substrate using nanoimprint lithography with an anodic aluminum oxide nano-template
    Jpn. J. Appl. Phys. 46(9B), 6375 [doi: 10.1143/JJAP.46.6375]
  12. High-frequency noise absorbing properties of nickel nanowire arrays prepared by DC electrodeposition
    Phys. Status Solidi A 204(12), 4025 [doi: 10.1002/pssa.200777375]
  13. Synthesis and microwave properties of highly permeable FeCo-based nano-alloys
    Phys. Status Solidi A 204(12), 4087 [doi: 10.1002/pssa.200777242]
  14. Electrochemical preparation of Co3Pt nanowires
    Phys. Status Solidi A 204(12), 4158 [doi: 10.1002/pssa.200777133]
  15. Magnetotransport of lateral Py/Pt/Py  spin valve device
    Phys. Status Solidi B 244(12), 4534 [doi: 10.1002/pssb.200777204]
  • 2006

  1. Fabrication of suspended single-walled carbon nanotubes via a direct lithographic route
    J. Mater. Chem. 16(2), 174 [doi: 10.1039/B510742C]
  2. Effect of co-deposited iron on microstructures and properties of electroplated nanocrystalline nickel-iron alloys
    J. Rare Earths 24(z1), 94 [doi: unavailable]
  3. Bias voltage dependence of magnetic tunnel junctions comprising double barriers and amorphous NiFeSiB layers
    J. Appl. Phys. 99(8), 08A902-1 [doi: 10.1063/1.2165129]
  4. Magnetoresistance and magnetization switching characteristics of magnetic tunnel junctions with amorphous CoFeSiB single and synthetic antiferromagnet free layers
    J. Appl. Phys. 99(8), 08T315-1 [doi: 10.1063/1.2176144]
  5. Effect of external magnetic field on anisotropy of Co/Cu multilayer nanowires
    J. Appl. Phys. 99(8), 08C909-1 [doi: 10.1063/1.2172579]
  6. Substrate effects on microstructure and magnetic properties of electrodeposited Co nanowire arrays
    J. Appl. Phys. 99(8), 08Q510-1 [doi: 10.1063/1.2172581]
  7. Fabrication and characterization of suspended single-walled carbon nanotubes
    Solid State Commun. 139(4),  186 [doi: 10.1016/j.ssc.2006.05.028]
  8. Magnetization switching of CoFeSiB free layered magnetic tunnel junctions
    J. Magn. Magn. Mater. 303(2), e223 [doi: 10.1016/j.jmmm.2006.01.041]
  9. Tunneling magnetoresistance and magnetization switching of CoFeSiB free layered magnetic tunnel junctions
    J. Magn. Magn. Mater. 303(2), e231 [doi: 10.1016/j.jmmm.2006.01.063]
  10. Control of magnetic anisotropy of Co nanowires
    J. Magn. Magn. Mater. 303(2), e281 [doi: 10.1016/j.jmmm.2006.01.082]
  11. Magnetic tunnel junctions comprising amorphous NiFeSiB and CoFeSiB free layers
    J. Magn. Magn. Mater. 304(1), 79 [doi: 10.1016/j.jmmm.2006.01.124]
  12. The pH and current density dependence of dc electrodeposited CoCu thin films
    J. Magn. Magn. Mater. 304(1), e100 [doi: 10.1016/j.jmmm.2006.01.191]
  13. Synthesis and magnetic anisotropy of multilayered Co/Cu nanowire array
    J. Magn. Magn. Mater. 304(1), e213 [doi: 10.1016/j.jmmm.2006.02.034]
  14. Magnetization switching of NiFeSiB free layers for magnetic tunnel junctions
    J. Magn. Magn. Mater. 304(1), e258 [doi: 10.1016/j.jmmm.2006.02.052]
  15. Switching characteristics of magnetic tunnel junction with amoprphous CoFeSiB free layer
    J. Magn. Magn. Mater. 304(1), e276 [doi: 10.1016/j.jmmm.2006.02.017]
  16. Material Characterization of Electroplated Nanocrystalline Nickel-Iron Alloys for Micro Electronic Mechanical System
    Jpn. J. Appl. Phys. 45(9A), 7084 [doi: 10.1143/JJAP.45.7084]
  17. Simulation studies of domain wall width changes in various nanoconstriction shapes
    IEEE Trans. Magn. 42(10), 2621 [doi: 10.1109/TMAG.2006.879729]
  18. Experimental and simulation study to identify current-confined path in Cu-Al space layer for CPP-GMR spin-valve applications
    IEEE Trans. Magn. 42(10), 2633 [doi: 10.1109/TMAG.2006.878857]
  19. Bias voltage dependence of magnetic of tunnel junctions comprising double barriers and CoFe/NiFeSiB/CoFe free layer
    IEEE Trans. Magn. 42(10), 2649 [doi: 10.1109/TMAG.2006.879720]
  20. Effect of magnetic field annealing upon Co-rich nanowires
    IEEE Trans. Magn. 42(10), 2778 [doi: 10.1109/TMAG.2006.880459]
  • 2005

  1. Influence of Freelayer in Magnetic Tunnel Junction on Switching of Submicrometer MRAM Arrays
    IEEE Trans. Magn. 41(2), 883 [doi: 10.1109/TMAG.2004.842079]
  2. The pH Dependence of CoCu Alloy Thin Films Fabricated on Amorphous Substrate by DC Electrodeposition
    IEEE Trans. Magn. 41(2), 930 [doi: 10.1109/TMAG.2004.842126]
  3. Switching Behavior of Indium Selenide Based Phase-Change Memory Cell
    IEEE Trans. Magn. 41(2) 1034 [doi: 10.1109/TMAG.2004.842032]
  4. Spin-Valve Effect in an FM/Si/FM Juncion
    J. Mater. Sci.-Mater. El. 16(3), 131 [doi: 10.1007/s10854-005-6590-9]
  5. Suppression of bias voltage dependence in double-barrier magnetic tunnel junctions comprised of freelayers with an amorphous layer insertion
    J. Appl. Phys. 97(10), 10C917-1 [doi: 10.1063/1.1853839]
  6. Switching characteristics of submicrometer magnetic tunnel junction devices with perpendicular anisotropy
    J. Appl. Phys. 97(10), 10C919-1 [doi: 10.1063/1.1854282]
  7. Magnetotransport and interdiffusion characteristics of magnetic tunnel junctions comprising nano-oxide layers upon exposure to postdeposition annealing
    Solid State Commun. 135(6), 348 [doi: 10.1016/j.ssc.2005.05.031]
  8. Magnetization switching and tunneling magnetoresistance effects of synthetic antiferromagnet free layers consisting of amorphous NiFeSiB
    Appl. Phys. Lett. 87(8), 082508-1 [doi: 10.1063/1.2033128]
  9. Electrical and Mechanical Properties of Tantalum Nitride Thin Films Deposited by Reactive Sputtering
    J. Crystal Growth 283(3-4), 404 [doi: 10.1016/j.jcrysgro.2005.06.017]
  10. Magnetization switching and tunneling magnetoresistance effects of MTJs with synthetic antiferromagnet free layers consisting of amorphous CoFeSiB
    IEEE Trans. Magn. 41(10), 2685 [doi: 10.1109/TMAG.2005.855296]
  11. Switching characteristics in magnetic tunnel junctions with a synthetic antiferromagnetic free layer
    IEEE Trans. Magn. 41(10), 2688 [doi: 10.1109/TMAG.2005.855298]
  12. Control of magnetic behavior in Fe3O4 nanostructures
    IEEE Trans. Magn. 41(10), 3304 [doi: 10.1109/TMAG.2005.854907]
  • 2004

  1. Magnetotransport properties in a lateral spin-injection device with an erromagnetic/Si/ferromagnetic junction
    Mater. Sci. Forum 449-452, 1081 [doi: 10.4028/]
  2. Surface Roughness Effects on Bias Voltage Characteristics in CoNbZr-Based Magnetic Tunnel Junction
    J. Magn. Magn. Mater. 272-276, e1481 [doi: 10.1016/j.jmmm.2003.12.616]
  3. Spin Transport in a Lateral Spin-Injection Device with an FM/Si/FM Junction
    J. Magn. Magn. Mater. 272-276, 1915 [doi: 10.1016/j.jmmm.2003.12.1169]
  4. Soft magnetic properties of sub 10 nm NiFe and Co films encapsulated with Ta or Cu
    Phys. Stat. Sol. (a) 201(8), 1859 [doi: 10.1002/pssa.200304601]
  5. Magnetic tunnel junctions stabilized by modified synthetic antiferromagnets
    Phys. Stat. Sol. (a) 201(8), 1676 [doi: 10.1002/pssa.200304600]
  6. Optimization of Ru intermediate layer in CoCr-based perpendicular magnetic recording media
    Phys. Stat. Sol. (a) 201(8), 1763 [doi: 10.1002/pssa.200304631]
  7. Tunnel barrier's property in magnetic tunnel junctions probed by Raman spectroscopy
    Phys. Stat. Sol. (a) 201(8), 1684 [doi: 10.1002/pssa.200304603]
  8. Current aspects and future perspectives of high-density MRAM
    Phys. Stat. Sol. (a) 201(8), 1617 [doi: 10.1002/pssa.200304539]
  9. Skewed ion beam etching: a simple method to obtain a reduction in critical dimensions for magnetoelectronic sensors
    Sensors and Actuators A 113(2), 236 [doi: 10.1016/j.sna.2004.03.003]
  10. Spin-valves with modified synthetic antiferromagnets exhibiting an enhanced bias point control capability at submicrometer dimensions
    J. Magn. Magn. Mater. 279(1),  L1 [doi: 10.1016/j.jmmm.2004.04.124]
  11. Anomalous switching in submicrometer magnetic tunnel junction arrays arising from magnetic vortex and domain wall pinning
    J. Appl. Phys. 96(3), 1748 [doi: 10.1063/1.1765852]
  12. Technological Issues for High-Density MRAM Development
    J. Magn. Magn. Mater. 282, 232 [doi: 10.1016/j.jmmm.2004.04.052]
  • 2003

  1. Interface and Microstructure Evolutions in Synthetic Ferrimagnet-Based Spin-Valves upon Exposure to Postdeposition Annealing
    J. Appl. Phys. 93(10), 7924 [doi: 10.1063/1.1540158]
  2. Characteristics of Magnetic Tunnel Junctions Consisting of Amorphous CoNbZr Layers
    J. Appl. Phys. 93(10), 8361 [doi: 10.1063/1.1558240]
  3. Effect of Zr concentration on the microstructure of Al and the magnetoresistance properties of the magnetic tunnel junction with a Zr-alloyed Al-oxide barrier
    Appl. Phys. Lett. 83(2), 317 [doi: 10.1063/1.1592312]
  4. Investigation of Magnetoresistive Characteristics of Metallic Multilayers Comprising Ru-Based Synthetic Antiferromagnetic Layer 
    J. Kor. Phys. Soc. 43(3), 396 [doi: 10.3938/jkps.43.396]
  5. Analysis on Giant Magnetoresistive Characteristics of Synthetic Antiferromagnet-Based Spin-Valves With Modified Pinned Layer
    IEEE Trans. Magn. 39(5), 2399 [doi: 10.1109/TMAG.2003.815462]
  6. Thermal and Mn Diffusion Behaviors of CoNbZr Based Spin Valves With Nano-oxide Layer
    IEEE Trans. Magn. 39(5), 2824 [doi: 10.1109/TMAG.2003.815724]
  • 2002

  1. Microstructural Evolution and Phase Transformation Characteristics of Zr-doped FePt Films
    J. Appl. Phys. 91(10), 6857 [doi: 10.1063/1.1447490]

  2. Exchange Coupling Characteristics of Bottom-Type Synthetic Ferrimagnet Based Spin Valve Films
    J. Appl. Phys. 91(10), 7107 [doi: 10.1063/1.1455603]
  3. Thermal Stability of Spin-Valves Incorporating Amorphous CoNbZr Under and Capping Layers
    J. Appl. Phys. 91(10), 8581 [doi: 10.1063/1.1447298]
  4. Detection of dc Voltages Generated in Multilayered Magnetic Thin Films Undergoing Ferromagnetic Resonance
    J. Kor. Phys. Soc. 41 (1), L1 [doi: 10.3938/jkps.41.1]
  5. Parametric Sensitivity Analysis on the Giant Magnetoresistive Characteristics of Synthetic Antiferromagnet-Based Spin-Valves
    J. Magn. Magn. Mater. 250, 25 [doi: 10.1016/S0304-8853(02)00408-0]
  6. Interlayer Diffusion and Specularity Aspects of Amorphous CoNbZr-Based Spin-Valves
    IEEE Trans. Magn. 38(5), 2685 [doi: 10.1109/TMAG.2002.803155]
  7. Magnetic and Magnetoresistance Properties of Synthetic Spin Valves with Different Pinning Layer Thicknesses
    J. Kor. Phys. Soc. 41(5), 753 [doi: 10.3938/jkps.41.753]
  • 2001

  1. Microstructural Evolution in PtMn-Based Spin-Valves Induced by Heat Treatment
    J. Magn. Magn. Mater. 226(Part2), 2070 [doi: 10.1016/S0304-8853(00)00765-4]
  2. Magnetoresistance and Interlayer Diffusion in PtMn Spin Valves upon Postdeposition Annealing
    J. Appl. Phys. 89(11), 6907 [doi: 10.1063/1.1361260]
  3. Rapid Ordering of Zr-Doped FePt Alloy Films
    Appl. Phys. Lett. 78(24), 4001 [doi: 10.1063/1.1379591]
  4. Permeability enhancement in Fe/CoNbZr Multilayers Prepared by Ar/H2 Mixed Gas Sputtering and Heat Treatment
    J. Magn. Magn. Mater. 233(3), L142 [doi: 10.1016/S0304-8853(01)00354-7]
  • 2000

  1. Magnetically Soft and Electrically Resistive CoNiFeS Alloy Films Prepared by Electrodeposition 
    J. Appl. Phys. 87(9), 5413 [doi: 10.1063/1.373360]
  2. Effects of Substrate Surface Topology on NiFe/Cu/Co Spin Valve Characteristics 
    Jpn. J. Appl. Phys. 39(1-8), 4767 [doi: 10.1143/JJAP.39.4767]
  3. Design of Recessed Yoke Heads for Minimizing Adjacent Track Encroachment
    IEEE Trans. Magn. 36(5), 2524 [doi: 10.1109/20.908493]
  4. Exchange Anisotropy and Thermal Properties of. Mn-Ir-Pt Exchange-Biased Layer
    IEEE Trans. Magn. 36(5), 2569 [doi: 10.1109/20.908512]
  5. MR Characteristics of Synthetic Ferrimagnet Based Spin-Valves With Different Pinning Layer Thickness Ratios
    IEEE Trans. Magn. 36(5), 2857 [doi: 10.1109/20.908608]
  6. Structural and Magnetoresistance Characteristics of CoFe/Ag/NiFe/Ag Composite Discontinuous Multilayers
    Appl. Phys. Lett. 77(26), 4199 [doi: 10.1063/1.1334946]
  • 1999

  1. Switching Characteristics of Spin Valve Devices Designed for MRAM applications
    J. Magn. Magn. Mater. 198(199), 6 [doi: 10.1016/S0304-8853(98)00590-3]
  2. Writing Characteristics of Pole-Trimmed MR Heads Comprising Composite Shared Poles
    IEEE Trans. Magn. 35(5), 2505 [doi: 10.1109/20.800873]
  3. Mathematical Modeling and Measurement of Etching Profile for Junction Shape Control in MR Read Heads
    IEEE Trans. Magn. 35(5), 2601 [doi: 10.1109/20.800906]
  • 1998

  1. Magnetic Changes in GMR Heads Caused by Electrostatic Discharge
    IEEE Trans. Magn. 34(4), 1519 [doi: 10.1109/20.706602]
  2. Recording at 300 KFCI with Perpendicular Co-alloy Multilayers
    IEEE Trans. Magn. 34(4), 1854 [doi: 10.1109/20.706725]
  • 1997

  1. Nonlinear Optical Investigations of Magnetic Heterostructures
    J. Appl. Phys. 81(8), 4354 [doi: 10.1063/1.364820]
  2. Electrostatic Discharge Sensitivity of Giant Magnetoresistive Recording Heads
    J. Appl. Phys. 81(8), 4921 [doi: 10.1063/1.364819]
  3. Data Storage and Retrieval Using Perpendicular Media and Magnetoresistive Read Transducer
    IEEE Trans. Magn. 33(4), 2538 [doi: 10.1109/20.595913]
  4. FeN/Ta Multilayers: Magnetic Properties and Application to Magnetic Recording Heads 
    IEEE Trans. Magn. 33(5), 2815 [doi: 10.1109/20.617740]
  5. Role of Medium Noise in Recording with CoCrTa/Pt Multilayers 
    IEEE Trans. Magn. 33(5), 3082 [doi: 10.1109/20.617851]
  6. Field Angle and Current Density Effects in Submicrometer Spin Valves for Digital Applications
    IEEE Trans. Magn. 33(5), 3292 [doi: 10.1109/20.617921]
  7. High Current-Density Measurements of GMR Spin-Valves for Magnetic Recording and Sensor Applications
    IEEE Trans. Magn. 33(5), 3541 [doi: 10.1109/20.619491]
  8. Low-Frequency Noise in NiFe/Cu Spin-Valves
    IEEE Trans. Magn. 33(5), 3586 [doi: 10.1109/20.619505]
  9. Second-Harmonic Magneto-Optic Kerr Effect from Spin-Valve Test Structures: Correlation with Magnetoresistance Response
    IEEE Trans. Magn. 33(5), 3598 [doi: 10.1109/20.619509]
  10. A Personal Computer Based Semi-Analytical Micromagnetics Design Tool
    IEEE Trans. Magn. 33(5), 4119 [doi: 10.1109/20.619682]
  11. Recording Performance of a Giant Magnetoresistive Head on a Perpendicular Multilayer Medium
    IEEE Trans. Magn. 33(5), 4411 [doi: 10.1109/20.620454]
  • 1996

  1. MR Head Wafer Fabrication Technology: Current and Future Perspectives
    IEEE Trans. Magn. 32(1), 25 [doi: 10.1109/20.477545]
  2. Observation of the Transverse Second-Harmonic Magneto-Optic Kerr Effect from Ni81Fe19 Thin Film Structures
    Appl. Phys. Lett. 68(11), 1573 [doi: 10.1063/1.115703]
  3. Magnetostriction Characteristics of Ultrathin Permalloy Films
    Appl. Phys. Lett. 68(20), 2885 [doi: 10.1063/1.116320]
  4. Deposition Condition and Thickness Dependence on Magnetic Properties of Sputtered NiFeCo Thin Films
    J. Appl. Phys. 79(8), 5446 [doi: 10.1063/1.362333]
  5. Giant Magnetoresistance and high sensitivity in Annealed NiFeCo/Ag Multilayers 
    J. Appl. Phys. 79(8), 5584 [doi: 10.1063/1.362249]
  6. Modeling Effects of Temperature Annealing on Giant Magnetoresistive Response in Discontinuous Multilayer NiFe/Ag Films
    J. Appl. Phys. 79(8), 5596 [doi: 10.1063/1.362253]
  7. Simulating Device Size Effects on Magnetization Pinning Mechanisms in Spin Valves
    J. Appl. Phys. 79(8), 6386 [doi: 10.1063/1.362692]
  8. Transverse and Logitudinal Second-Harmonic Magneto-Optic Kerr Effect Observed from Ni81Fe19 Thin Film Structures
    IEEE Trans. Magn. 32(5), 4087 [doi: 10.1109/20.539272]
  9. NiO Exchange Bias Layers Grown by Direct Ion Beam Sputtering of a Nickel Oxide Target
    IEEE Trans. Magn. 32(5), 4651 [doi: 10.1109/20.539107]
  10. Simulated Magnetoresistive Behavior of Geometrically Assymmetric Spin Valves
    IEEE Trans. Magn. 32(5), 4606 [doi: 10.1109/20.539093]
  11. Identifying Phenomenological Magnetoresistive Properties of Spin Valves 
    IEEE Trans. Magn. 32(5), 4609 [doi: 10.1109/20.539094]
  12. Magnetostatic Effects in Giant Magnetoresistive Spin-Valve Devices 
    Appl. Phys. Lett. 69(25), 3935 [doi: 10.1063/1.117575]
  • 1995

  1. Magnetostriction and Giant Magnetoresistance in Annealed NiFe/Ag Multilayers
    Appl. Phys. Lett. 66(8), 1009 [doi: 10.1063/1.113588]
  2. Magnetic, Microstructural, and Compositional Characterization of Fe-N Thin Films for Recording Sensor Applications
    J. Vac. Sci. Technol. A 13(3), 1040 [doi: 10.1116/1.579581]
  3. Magnetoresistance of Thin-Film NiFe Devices Exhibiting Single-Domain Behavior
    IEEE Trans. Magn. 31(6), 3358 [doi: 10.1109/20.490381]
  4. Unidirectional Anisotropy in Exchange Coupled NiFe/FeMn System for Thin NiFe Films
    IEEE Trans. Magn. 31(6), 3823 [doi: 10.1109/20.489784]
  5. Low Magnetostriction in Annealed NiFe/Ag Giant Magnetoresistive Multilayers
    IEEE Trans. Magn. 31(6), 3964 [doi: 10.1109/20.489831]
  • 1994

  1. Magnetic Properties of Reactively Sputtered Fe1-xO and Fe3O4 Thin Films
    J. Appl. Phys. 75(1), 431 [doi: 10.1063/1.355869]
  2. Magnetic Properties and Texture of Sputtered Fe/Fe3O4 Multilayer Films
    IEEE Trans. Magn. 30(3), 1316 [doi: 10.1109/20.297770]
  3. Stress, Microstructure and Materials Reliability of Sputter-Deposited Fe-N Films
    IEEE Trans. Magn. 30(6), 3921 [doi: 10.1109/20.333944]
  • 1993

  1. Magnetic Properties of Sputtered Fe Thin Films: Processing and Thickness Dependence 
    J. Appl. Phys. 74(2), 1233 [doi: 10.1063/1.354926]