Journal Publications

  • 2020

    1. Interfacial Perpendicular Magnetic Anisotropy in Magnetic Tunnel Junctions Comprising CoFeB and FeNiSiB Layers
      Electronic Materials Letters 16 [doi: 10.1007/s13391-019-00183-2]

    2. Strategy to control magnetic coercivity by elucidating crystallization pathway-dependent microstructural evolution of magnetite mesocrystals
      Nature Communications 11 [doi: 10.1038/s41467-019-14168-0]

    3. Spin-Orbit Torque Driven Magnetization Switching and Precession by Manipulating Thickness of CoFeB/W Heterostructures
      Advanced Electronic Materials 6 [doi: 10.1002/aelm.201901004]

    4. Thickness and composition-dependent spin-orbit torque behaviors in perpendicularly magnetized Ta/W (t)/CoFeB and Ta1-xWx/CoFeB junction structures
      Journal of Alloys and Compounds 823 [doi: 10.1016/j.jallcom.2020.153744]

    5. Design of Magnetic-Plasmonic Nanoparticle Assemblies via Interface Engineering of Plasmonic Shells for Targeted Cancer Cell Imaging and Separation
      Small 2001103 [doi: 10.1002/smll.202001103]

  • 2019

    1. Microwave absorption properties of magnetite multi-granule nanocluster–multiwall carbon nanotube composites
      Functional Materials Letters 12 [doi: 10.1142/S1793604719500115]

    2. Synthesis and Characterization of Magnetic–Luminescent Fe3O4–CdSe Core–Shell Nanocrystals
      Electronic Materials Letters 15 [doi: 10.1007/s13391-018-0097-z]

    3. Application of radially grown ZnO nanowires on poly-L-lactide microfibers complexed with a tumor antigen for cancer immunotherapy
      Nanoscale 11 [doi: 

    4. Quantitative Analysis on Cellular Uptake of Clustered Ferrite Magnetic Nanoparticles
      Electronic Materials Letters [doi:]

    5. Properties of a rare earth free L10-FeNi hard magnet developed through annealing of FeNiPC amorphous ribbons
      Current Applied Physics 19 
      [doi: 10.1016/j.cap.2019.03.001]

    6. Metallic Fe-Au barcode nanowires as a simultaneous T cell capturing cytokine sensing platform for immunoassay at the single-cell level

      ACS Applied Material Interfaces 11 [doi: 10. 1021/acsami. 9b06535] 

    7. Fabrication of graphene-magnetite multi-granule nanocluster composites for microwave absorption application

      Journal of Composite Materials 53 [doi: 10.1177/0021998319853032


    8. Application of ZnO-based nanocomposites for vaccines and cancer immunotherapy

      Pharmaceutics 11 [doi: 10.3390/pharmaceutics11100493



  • 2018

    1. Electrochemical synthesis of CuIn(1-x)GaxSe2 nanowires with controlled stoichiometry
      Materials Letters 211 [doi:

    2. Role of the heavy metal's crystal phase in oscillations of perpendicular magnetic anisotropy and the interfacial Dzyaloshinskii-Moriya interaction in W/Co-Fe-B/MgO films
      Physical Review Applied 9 [doi: 10.1103/PhysRevApplied.9.064005]

    3. Formation of high aspect ratio fused silica nanowalls by fluorine-based deep reactive ion etching
      Nano-Structures & Nano-Objects 15 [doi: 

    4. MnO2 Nanowire−CeO2 Nanoparticle Composite Catalysts for the Selective Catalytic Reduction of NOx with NH3
      ACS Applied Materials & Interfaces 10 [doi: 10.1021/acsami.8b09605 ]

    5. Microstructural evolution and electrical resistivity of nanocrystalline W thin films grown by sputtering
      Materials Characterization 145 [doi: 10.1016/j.matchar.2018.09.016]

    6. Fabrication of three-dimensional electrical patterns by swollen-off process: An evolution of the lift-off process
      Current Applied Physics 18 [doi: 10.1016/j.cap.2018.06.001]

    7. Magnetization reversal of ferromagnetic nanosprings affected by helical shape
      Nanoscale 10 [doi: 10.1039/c8nr05655b]

  • 2017

    1. CoFeSiBePd multilayers and co-deposited alloy films exhibiting perpendicular magnetic anisotropies after heat treatment up to 500
      Acta Materialia 125 [doi:10.1016/j.actamat.2016.11.068

    2. Perpendicular Magnetic Anisotropy and Interfacial Dzyaloshinskii-Moriya Interaction in Pt/CoFeSiB Structures
      IEEE MAGNETICS LETTERS 8, 3100504 [doi: 10.1109/LMAG.2016.2617304]



    3. Radio frequency-mediated local thermotherapy for destruction of pancreatic tumors using Ni–Au core–shell nanowires
      Nanotechnology 28, 03LT01 [doi: 10.1088/1361-6528/28/3/03LT01]



    4. Synthesis of Co nanotubes by nanoporous template-assisted electrodeposition via the incorporation of vanadyl ions

      CHEMICAL COMMUNICATIONS 53  [doi: 0.1039/c6cc09843f

    5. Eradication of Plasmodium falciparum from Erythrocytes by Controlled Reactive Oxygen Species via Photodynamic Inactivation Coupled with Photofunctional Nanoparticles
      ACS APPLIED MATERIALS & INTERFACES 9 [doi: 10.1021/acsami.6b16793]

    6. Annealing effect on the magnetic properties of cobalt-based amorphous alloys
      [doi: 10.1016/j.cap.2017.01.025]

    7. Spontaneous nucleation and topological stabilization of skyrmions in magnetic nanodisks with the interfacial Dzyaloshinskii–Moriya interaction
      Journal of Magnetism and Magnetic Materials 429 [doi: 10.1016/j.jmmm.2017.01.038]

    8. Enhancing current-induced torques by abutting additional spin polarizer layer to nonmagnetic metal layer
      Scientific Reports 7, 45669 [doi: 10.1038/srep45669]

    9. Synthesis, Microstructure, and Physical Properties of Metallic Barcode Nanowires
      METALS AND MATERIALS INTERNATIONAL 23 [doi: 10.1007/s12540-017-7071-4]

    10. Functionalization of 3D printed micro-containers with Ni-Au core-shell nanowires
      1600887 [doi: 10.1002/pssa.201600887]

    11. Efficient intracellular delivery of biomacromolecules employing clusters of zinc oxide nanowires
      Nanoscale 9 [doi: 10.1039/c7nr05219g]

    12. Photonic Reactions Leading to Fluorescence in a Polymeric System Induced by the Photothermal Effect of Magnetite Nanoparticles Using a 780 nm Multiphoton Laser
      Small 13, UNSP 1700897 [doi: 10.1002/smll.201700897]

    13. Effect of the magnetic core size of amino-functionalized Fe3O4-mesoporous  SiO2 core-shell nanoparticles on the removal of heavy metal ions
      Colloids and Surfaces A 531 [doi: 10.1016/j.colsurfa.2017.07.086]

    14. Magnetically soft FeCoTiZrB alloys with high saturation magnetization
      Intermetallics 90 [doi: 10.1016/j.intermet2017.07.020]

    15. Crystallographic Orientation and Microstructure-Dependent Magnetic Behaviors in Arrays of Ni Nanowires
      IEEE TRANSACTIONS ON MAGNETICS 53, 2004004 [doi: 10.1109/TMAG.2017.2692798]

    16. Magnetic Particle Spectrometry of Fe3O4 Multi-Granule Nanoclusters

      IEEE TRANSACTIONS ON MAGNETICS 53, 5101004 [doi: 10.1109/TMAG.2017.2701904]

    17. Microstructure and Magnetic Properties of CoFe Nanowires and Helical Nanosprings

      IEEE TRANSACTIONS ON MAGNETICS 53, 2004104 [doi: 10.1109/TMAG.2017.2700294]

  • 2016

    1. Optimization of Fe/Co ratio in FeCoTiZnB alloys for high saturation magnetization
      Current Appllied Physics 16, 515  [doi: 10.1016/j.cap.2016.02.005]

    2. Synthesis of Fe doped ZnO nanowire arrays that detect formaldehyde gas
      Journal of Nanoscience and Nanotechnology 16, 4814 [doi: 10.1166/jnn.2016.12264]

    3. Ultrahigh tensile strength nanowires with a Ni/Ni-Au multilayer nanocrystalline structure
      Nano Letters ,  [doi: 10.1021/acs.nanolett.6b00275]

    4. Catalytic activity of vanadium oxide catalysts prepared by electrodeposition for the selective catalytic reduction of nitrogen oxides with ammonia
      Reac. Kinet. Mech. Cat 118, 633 [doi: 10.1007/s11144-016-101-0]

    5. Localized electroporation effect on adherent cells in modified electric cell–substrate impedance sensing circuits
      Applied Physics Express 9, 107001, [doi: 10.7567/APEX.9.107001]

    6. Size-dependent changeover in magnetization reversal mode of self-assembled onedimensional chains of spherical Fe3O4 nanoparticles
      Japanese Journal of Applied Physics 55, 100303 [doi: 10.7567/JJAP.55.100303]

    7.  White-light-emitting magnetite nanoparticle–polymer composites: photonic reactions ofmagnetic multi-granule nanoclusters as photothermal agents†
      Nanoscale 8, 17136 [doi: 10.1039/c6nr04408e]

    8. Effect of Silicon Additions on the Magnetic Properties for Fe-Based Alloys
      Journal of Nanoscience and Nanotechnology 16, 11210 [doi: 10.1166/jnn.2016.13479]

    9. Generation of protective immunity against Orientia tsutsugamushi infection by immunization with a zinc oxide nanoparticle combined with ScaA antigen
      Journal of Nanobiotechnology 14, 76 [doi: 10.1186/s12951-016-0229-2]

    10. 3 Dimensional-Printed Micro-Container with Graphene Current Collector and Manganese Oxide Thin-Film as Cathodes of Li-Batteries
      Nanoscience and Nanotechnology Letters 8, 1095 [doi: 10.1166/nnl.2016.2273]




  • 2015

  1. Functional Manipulation of Dendritic Cells by Photo-switchable Generation of Intracellular Reactive Oxygen Species
    ACS Chemical Biology 10, 757 [doi: 10.1021/cb5009124]

  2. The toxicity and distribution of iron oxide–zinc oxide core-shell nanoparticles in C57BL/6 mice after repeated subcutaneous administration
    J. Appl. Toxicol 35, 593 [doi:

  3. Fabrication of planar and curved polyimide membranes with a pattern transfer method using ZnO nanowire arrays as templates
    Materials Letters 149, 109 [doi: 10.1016/j.matlet.2015.02.114]

  4. Magnetic multi-granule nanoclusters: A model system that exhibits universal size effect of magnetic coercivity
    Scientific reports 5, 12135 [doi: 10.1038/srep12135

  5. Microstructure and magnetic properties of LaSrMnO nanoparticles and their application to cardiac immunoassay
    IEEE Transactions on Magnetics 51, 5101304 [doi: 10.1109/TMAG.2015.2438021 

  6. Current fluctuation of electron and hole carriers in multilayer WSe2 field effect transistors
    Applied Physics Letters 107, 242102 [doi:]





  • 2014

  1. Magnetic Anosotropy Evolution in CoFe/Au Barcode Nannowire Arrays
    IEEE Trans. Magn. 50 [doi: 10.1109/TMAG.2013.2279278]

  2. Phase dependent magnetic properties of Ni-Au alloy nanowires
    Mater. Lett. 116. 86 [doi: 10.1016/j.matlet.2013.10.104]

  3. Isolation of DNA using magnetic nanoparticles coated with dimercaptosuccinic acid
    Anal. Biochem. 447, 144 [doi: 

  4. Efficiency of genomic DNA extraction dependent on the size of magnetic nanoclusters
    J. Appl. Phys. 115, 17B512-1 [doi: 

  5. Synthesis and magnetic properties of size-tunable MnxFe3-xO4 ferrite nanoclusters
    J. Appl. Phys. 115, 17B512-1 [doi: 10.1063/1.4864736]

  6. Gate-controlled spin-orbit coupling in InAs/InGaAs quantum well structures
    J. Nanosci. Nanotech. 14, 5212 [doi: 10.1166/jnn.20148464]
  7. Effect of compositional variation on the soft magnetic properties of Fe(87-x-y)CoxTi7Zr6By amorphous ribbons
    Curr. Appl. Phys. 14, 685 [doi: 10.1016/j.cap.2014.02.009

  8. Self-assembly of fluorescent and magnetic Fe3O4@coordination polymer nanochains
    Chem. Commun. 50, 7617 [doi: 10.1039/C4CC03217A

  9. Magnetic nanodiscs fabricated from multilayered nanowires
    J. Nanosci. Nanotech. 14, 7923 [doi: 10.1166/jnn.2014.9437]

  10. Immunochromatographic assay of hepatitis B surface antigen using magnetic nanoparticles as signal
    IEEE Trans. Magn. 50, 5102104 [doi: 10.1109/TMAG.2014.2324613]

  11. Magnetic vortex state and multi-domain pattern in electrodeposited hemispherical nanogranular nickel films
    J. Magn. Magn. Mater. 371, 149 [doi: 10.1016/j.jmmm.2014.07.042]

  • 2013

  1. Tunable synthesis and multifunctionalities of Fe3O4-ZnO hybrid core-shell nanocrystals
    Mater. Res. Bull. 48, 551-558 [doi: 10.1016/j.materresbull.2012.11.051]

  2. Solid-state phase transformation mechanism for formation of magnetic multi-granule nanocluster
    RSC Adv. 3, 3631-3637 [doi: 10.1039/C3RA21639J]
  3. ZnO-Ag Composite Nanocrystals from Nanoemulsion: Synthesis, Magnetic, and Optical Properties
    Appl. Phys. Express 6 (6), 063003-1 [doi: 10.7567/APEX.6.063005]
  4. Dynamic Microcontainers as Microvacuums for Collecting Nanomaterials After Clinical Treatments
    IEEE Trans. Magn. 49 (7), 3464-3467 [doi: 
  5. Growth behavior and field emission property of ZnO nanowire arrays on Au and Ag films
    AIP Adv. 3 (9), 092132-1 [doi: 
  6. Synthesis, microstructure, and magnetic properties of monosized MnxZnyFe3x − yOferrite nanocrystals
    Nanoscale Res. Lett. 8, 530-1 [doi: 
  • 2012

  1. Control of Magnetic Domains in Co/Pd Multilayered Nanowires with Perpendicular Magnetic Anisotropy
    J. Nanosci. Nanotechno. 12, 428 [doi: 10.1166/jnn.2012.5404]
  2. Magnetically driven spinning nanowires as effective materials for eradicating living cells
    J. Appl. Phys. 111 (7), 07B329-1 [doi: 10.1063/1.3678437]
  3. Magnetic NiFe/Au barcode nanowires with self-powered motion
    J. Appl. Phys. 111 (7), 07B513-1 [doi: 10.1063/1.3676062]
  4. Magnetic and optical properties of monosized Eu-doped ZnO nanocrystals from nanoemulsion
    J. Appl. Phys. 111 (7), 07B523-1 [doi: 10.1063/1.3676422]
  5. Effects of notch shape on the magnetic domain wall motion in nanowires with in-plane or perpendicular magnetic anisotropy
    J. Appl. Phys. 111 (7), 07D123-1 [doi: 10.1063/1.3677340]
  6. Photosensitizer and vancomycin-conjugated novel multifunctional magnetic particles as photoinactivation agent for selective killing of pathogenic bacteria
    Chem. Commun. 48 (38), 4591 [doi: 10.1039/C2CC17766H]
  7. Transport and switching behaviors in magnetic tunnel junctions consisting of CoFeB/FeNiSiB hybrid free layers
    J. Appl. Phys. 111, 093913-1 [doi: 10.1063/1.4709738]
  8. Magnetic domain wall motion by current injection in CoPt nanowires consisting of notches
    Solid State Commun. 152 (12) 1004 [doi: 10.1016/j.ssc.2012.03.004]
  9. Domain wall configuration and magneto-transport properties in dual spin-valve with nanoconstriction
    Appl. Phys. Lett. 100 (24), 242409-1 [doi: 10.1063/1.4729126]
  10. Morphology and electrical properties of high aspect ratio ZnO nanowires grown by hydrothermal method without repeated batch process
    Appl. Phys. Lett. 101 (8), 083905-1~4 [doi: 10.1063/1.4748289]
  11. One-pot synthesis and characterization of bifunctional Au-Fe3O4 hybrid core-shell nanoparticles
    J. Alloy Compd. 537, 60 [doi: 10.1016/j.jallcom.2012.05.062]
  12. Compositional dependence of magnetic properties in CoFe/Au nanobarcodes
    Appl. Phys. Express. 5, 103003-1~3 [doi: 10.1143/APEX.5.103003]
  13. Structural and magnetic properties of epitaxial Co2FeAl films grown on MgO substrates for different growth temperatures
    Acta Mater. 60, 6714-6719 [doi: 10.1016/j.actamat.2012.08.041]
  14. Dimensional dependence of magnetic properties in arrays of CoFe/Au barcode nanowire
    IEEE Trans. Magn. 48 (11), 3929~3932 [doi: 10.1109/TMAG.2012.2202101]
  15. Magnetotransport properties of dual MgO barrier magnetic tunnel junctions consisting of CoFeB/FeNiSiB/CoFeB free layers
    Appl. Phys. Lett. 101, 232401-1~4 [doi: 10.1063/1.4768931]
  • 2011

  1. Tocopheryl oligochitosan-based self assembling oligomersomes for siRNA delivery
    Biomaterials 32(3), 849 [doi: 10.1016/j.biomaterials.2010.09.027]
  2. Phospholipid-driven long-range ordering of Fe3O4 nanoparticles
    Appl, Surf. Sci. 257 (7), 3128 [doi: 10.1016/j.apsusc.2010.10.128]
  3. Non-aqueous synthesis of water-dispersible Fe3O4-Ca3(PO4)2 core-shell nanoparticles
    Nanotechnology 22(5), 055701 [doi: 10.1088/0957-4484/22/5/055701]
  4. Domain wall generation and propagation in amorphous ferromagnetic NiFeSiB film confirmed by magneto-optical indicator film method
    Thin Solid Films 519(10), 3301 [doi: 10.1016/j.tsf.2010.12.029]
  5. Resistive switching behavior in a Ni/Ag2Se/Ni nanowire 
    Appl. Phys. A 102(4), 897 [doi: 10.1007/s00339-011-6319-y]
  6. Labeling of macrophage cell using biocompatible magnetic nanoparticles 
    J. Appl. Phys. 109(7), 07B309-1 [doi: 10.1063/1.3563073]
  7. Nonaqueous synthesis and magnetic properties of ZnFe2O4 nanocrystals with narrow size distributions 
    J. Appl. Phys. 109(7), 07B511-1 [doi: 10.1063/1.3540407]
  8. Effects of Co addition on magneto-transport properties of magnetic tunnel junction consisting of CoFeB or CoFeSiB free layer 
    J. Appl. Phys. 109(7), 07D346-1 [doi: 10.1063/1.3565404]
  9. Influence of interface state in Fe/MgO/Fe magnetic tunnel junction system: C modified interfaces-a first principle study 
    J. Appl. Phys. 109(8), 083714-1 [doi: 10.1063/1.3575337]
  10. Microstructural Changes of Epitaxial Fe/MgO Layers grown on InAs(001) Substrates 
    Cryst. Growth Des.11, 2889 [doi: 10.1021/cg200051k]
  11. Ni-Au core-shell nanowires: Synthesis, microstructures, biofunctionalization, and the toxicologic effects on pancreatic cancer cells
    J. Mater. Chem. 21 (32), 12089 [doi: 10.1039/c1jm11143d]
  12. Effect of interparticle interactions and size dispersion in magnetic nanoparticle assemblies: a static and dynamic study
    Appl. Phys. Lett. 99, 062506-1 [doi: 10.1063/1.3624833]
  13. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy
    Nature Nanotechnology 6, 675 [doi: 10.1038/NNANO.2011.149]
  14. Magnetotransport and trapping of magnetic domain walls in spin valves with nanoconstrictions
    IEEE Trans. Magn. 47 (10), 2436 [doi: 10.1109/TMAG.2011.2158400]
  15. Lithium powder anodes utilizing microcage structures in lithium secondary cells
     J. Ceram. Process. Res. 12 (S2), s93 [doi: -]
  16. Fabrication and characterization of RF nanoantenna on a nanoliter-scale 3D microcontainer
    Nanotechnology 22 (45), 455303-1 [doi: 10.1088/0957-4484/22/45/455303]
  • 2010

  1. Inverse Hall-Petch relation of nanostructured Ni films prepared by electrodeposition
    Curr. Appl. Phys. 10(1), 57 [doi: 10.1016/j.cap.2009.03.026]
  2. Insertion loss characteristics of passive devices fabricated on anodized aluminum oxide layers formed on Si substrates
    Sensor. Actuat. A:Phys. 157(1), 32 [doi: 10.1016/j.sna.2009.11.021]
  3. Effects of Co addition on microstructure and magnetic properties of ferromagnetic CoFeSiB alloy films
    Acta Materialia 58(8), 2836 [doi: 10.1016/j.actamat.2010.01.006]
  4. Numerical simulations of collective magnetic properties and magnetoresistance in 2D ferromagnetic nanoparticle arrays
    J. Phys. D: Appl. Phys. 43(16), 165002-1 [doi: 10.1088/0022-3727/43/16/165002]
  5. CPP Transport Properties of Ni/Ru and Co90Fe10/Cu Interfaces
    IEEE Trans. Magn. 46(6), 1374 [doi: 10.1109/TMAG.2010.2045223]
  6. Observation of Suppressed Interdiffusion in FeRh/FePt-Ta Bilayer Thin Films
    IEEE Trans. Magn. 46(6), 2104 [doi: 10.1109/TMAG.2010.2042148]
  7. I-V characteristics of a vertical single Ni nanowire by voltage-applied atomic force microscopy
    Curr. Appl. Phys. 10(4), 1037 [doi: 10.1016/j.cap.2009.12.036]
  8. The synthesis and characterization of polymer-coated FeAu multifunctional nanoparticles
    Nanotechnology 21(33), 335602-1 [doi: 10.1088/0957-4484/21/33/335602]
  9. Fabrication of monolithic polymer nanofluidic channels using nanowires as sacrificial templates
    Nanotechnology 21(42), 425302-1 [doi: 10.1088/0957-4484/21/42/425302]
  10. Current induced domain wall motion in nanostripes with perpendicular magnetic anisotropy
    J. Magn. Magn. Mater. 322(21), 3601 [doi: 10.1016/j.jmmm.2010.05.047]
  • 2009

  1. Monosized Core-Shell Fe3O4(Fe)/Au Multifunctional Nanocrystals
    J. Nanosci. Nanotechnol. 9(2), 754 [doi: 10.1166/jnn.2009.C018]
  2. Dense stripe domains in a nanocrystalline CoFeSiB thin film
    Curr. Appl. Phys. 9(3), 688 [doi: 10.1016/j.cap.2008.06.009]
  3. Synthesis and magnetic properties of multifunctional CoPtAu nanoparticles
    J. Appl. Phys. 105(7), 07B527-1 [doi: 10.1063/1.3072750]
  4. Structural and magnetic properties of chemically synthesized Fe doped ZnO
    J. Appl. Phys. 105(7), 07C520-1 [doi: 10.1063/1.3073933]
  5. Spin wave quantization in continuous film with stripe domains
    J. Appl. Phys. 105(7), 07D544-1 [doi: 10.1063/1.3072757]
  6. A highly sensitive and selective diagnostic assay based on virus nanoparticles
    Nat. Nanotechnol. 4, 259 [doi: 10.1038/nnano.2009.38]
  7. Trnsport Properties of Magnetic Tunnel Junctions Comprising NiFeSiB/CoFeB Hybrid Free Layers
    IEEE Trans. Magn. 45(6), 2364 [doi: 10.1109/TMAG.2009.2018574]
  8. Effect of Interface Roughness on Magnetoresistance and Magnetization Switching in Magnetic Tunnel Junction
    IEEE Trans. Magn. 45(6), 2396 [doi: 10.1109/TMAG.2009.2018586]
  9. Giant Diamagnetism in AuFe Nanoparticles
    IEEE Trans. Magn. 45(6), 2442 [doi: 10.1109/TMAG.2009.2018604]
  10. Fabrication of Multifunctional Au Doped CoPt Nanowires
    IEEE Trans. Magn. 45(6), 2471 [doi: 10.1109/TMAG.2009.2018653]
  11. Molecular dynamics simulation study of deposition and annealing behaviors of Al atoms on Cu surface
    J. Appl. Phys. 105(11), 114312-1 [doi: 10.1063/1.3142382]
  12. A sensitive method to detect Escherichia coli based on immunomagnetic separation and real-time PCR amplification of aptamers
    Biosens. Bioelectron. 24(12), 3550 [doi: 10.1016/j.bios.2009.05.010]
  13. Composition-dependent crystal structure and magnetism in nanocrystalline Co-rich alloy
    IEEE Trans. Magn. 45(10), 3862 [doi: 10.1109/TMAG.2009.2024540]
  14. Synthesis and magnetic properties of multifunctional Fe3O4-AuPt core-shell nanoparticles
    IEEE Trans. Magn. 45(10), 4041 [doi: 10.1109/TMAG.2009.2025667]
  15. Phase changeable silver selenide thin films fabricated by pulse electrodeposition
    Curr. Appl. Phys. 9(6), 1338 [doi: 10.1016/j.cap.2008.12.017]
  16. Inverted magnetoresistance in dual spin valve structures with a synthetic antiferromagnetic free layer
    Appl. Phys. Lett. 95(22), 222506-1 [doi: 10.1063/1.3266522]
  • 2008

  1. CoPt nanoparticles by a modified polyol process
    Colloid. Surface. A 313-314, 250 [doi: 10.1016/j.colsurfa.2007.04.105]
  2. Sub 5 nm Fe3O4 nanocrystals via coprecipitation method
    Colloid. Surface. A 313-314, 268 [doi: 10.1016/j.colsurfa.2007.04.108]
  3. Synthesis of monosized magnetic-optical AuFe alloy nanoparticles
    J. Appl. Phys. 103(7), 07D529-1 [doi: 10.1063/1.2837619]
  4. A Molecular Dynamics Study of the Deposition and the Diffusion Behaviors of Al on a Cu Surface
    J. Kor. Phy. Soc. 52(94), 1241 [doi: 10.3938/jkps.52.1241]
  5. Hyperthermia with Magnetic Nanowires for Inactivating Living Cells
    J. Nanosci. Nanotechnol. 8(5), 2323 [doi: doi:10.1166/jnn.2008.273]
  6. Synthesis of streptavidin-FITC-conjugated core-shell Fe3O4-Au nanocrystals and their application for the purification of CD4+ lymphocytes
    Biomaterials 29(29), 4003 [doi: 10.1016/j.biomaterials.2008.06.031]
  7. Structural and magnetic properties of amorphous and nanocrystalline CoFeSiB thin films
    IEEE Trans. Nanotechnol. 7(4), 409 [doi: 10.1109/TNANO.2008.926334]
  8. Bias voltage dependence of magnetic tunnel junctions comprising amorphous ferromagnetic CoFeSiB layer with double barriers
    Phys. Stat. Sol. 205(8), 1847 [doi: 10.1002/pssa.200723639]
  9. Magnetoresistance variation of magnetic tunnel junctions with NiFeSiB/CoFeB free layers depending on MgO tunnel barrier thickness
    IEEE Trans. Magn. 44(11), 2547 [doi: 10.1109/TMAG.2008.2003244]
  10. Magneto-transport characteristics of magnetic tunnel junction with a synthetic antiferromagnetic amorphous CoFeSiB free layer
    IEEE Trans. Magn. 44(11), 2598 [doi: 10.1109/TMAG.2008.2002383]
  11. Growth and magnetic properties of CoPtAu nanowires
    IEEE Trans. Magn. 44(11), 2726 [doi: 10.1109/TMAG.2008.2001500]
  12. Synthesis and characterization of Fe-FeOx core-shell nanowires
    IEEE Trans. Magn. 44(11), 3950 [doi: 10.1109/TMAG.2008.2001515]
  • 2007

  1. A study of the role of HBr and oxygen on the etch selectivity and the post-etch profile in a polysilicon/oxide etch using HBr/O2 based high density plasma for advanced DRAMs
    Mat. Sci. Semicon. Proc. 10(1), 41 [doi: 10.1016/j.mssp.2006.08.027]
  2. Characteristics of magnetic tunnel junctions comprising ferromagnetic amorphous NiFeSiB layers
    J. Magn. Magn. Mater. 310(2), 1929 [doi: 10.1016/j.jmmm.2006.10.762]
  3. Effect of field deposition and pore size on Co/Cu barcode nanowires by electrodeposition
    J. Magn. Magn. Mater. 310(2), 2420 [doi: 10.1016/j.jmmm.2006.10.809]
  4. Interfacial mixing in double-barrier magnetic tunnel junctions with amorphous ferromagnetic NiFeSiB layers
    J. Magn. Magn. Mater. 310(2), e638 [doi: 10.1016/j.jmmm.2006.10.683]
  5. One-pot polyol synthesis of monosize PVP-coated sub-5 nm Fe3O4 nanoparticles for biomedical applications 
    J. Magn. Magn. Mater. 310(2), e815 [doi: 10.1016/j.jmmm.2006.10.776]
  6. Domain wall width and velocity behaviors in notched magnetic devices
    J. Appl. Phys. 101(9), 09F504-1 [doi: 10.1063/1.2711166]
  7. Effects of Cu doping on the microstructure and magnetic properties of CoPt nanowires
    J. Appl. Phys. 101(9), 09K513-1 [doi: 10.1063/1.2710321]
  8. Iron-Gold Barcode Nanowires
    Angew. Chem. Int. Edit. 119(20), 3737 [doi: 10.1002/ange.200605136]
  9. Sub 5 nm magnetite nanoparticles: synthesis, microstructure, and magnetic properties
    Mater. Lett. 61(14-15), 3124 [doi: 10.1016/j.matlet.2006.11.032]
  10. Aging effect on the optoelectronic properties of a single ZnO nanowire
    Jpn. J. Appl. Phys. 46(7A), 4355 [doi: 10.1143/JJAP.46.4355]
  11. Fabrication of nano-porous structure on silicon substrate using nanoimprint lithography with an anodic aluminum oxide nano-template
    Jpn. J. Appl. Phys. 46(9B), 6375 [doi: 10.1143/JJAP.46.6375]
  12. High-frequency noise absorbing properties of nickel nanowire arrays prepared by DC electrodeposition
    Phys. Status Solidi A 204(12), 4025 [doi: 10.1002/pssa.200777375]
  13. Synthesis and microwave properties of highly permeable FeCo-based nano-alloys
    Phys. Status Solidi A 204(12), 4087 [doi: 10.1002/pssa.200777242]
  14. Electrochemical preparation of Co3Pt nanowires
    Phys. Status Solidi A 204(12), 4158 [doi: 10.1002/pssa.200777133]
  15. Magnetotransport of lateral Py/Pt/Py  spin valve device
    Phys. Status Solidi B 244(12), 4534 [doi: 10.1002/pssb.200777204]
  • 2006

  1. Fabrication of suspended single-walled carbon nanotubes via a direct lithographic route
    J. Mater. Chem. 16(2), 174 [doi: 10.1039/B510742C]
  2. Effect of co-deposited iron on microstructures and properties of electroplated nanocrystalline nickel-iron alloys
    J. Rare Earths 24(z1), 94 [doi: unavailable]
  3. Bias voltage dependence of magnetic tunnel junctions comprising double barriers and amorphous NiFeSiB layers
    J. Appl. Phys. 99(8), 08A902-1 [doi: 10.1063/1.2165129]
  4. Magnetoresistance and magnetization switching characteristics of magnetic tunnel junctions with amorphous CoFeSiB single and synthetic antiferromagnet free layers
    J. Appl. Phys. 99(8), 08T315-1 [doi: 10.1063/1.2176144]
  5. Effect of external magnetic field on anisotropy of Co/Cu multilayer nanowires
    J. Appl. Phys. 99(8), 08C909-1 [doi: 10.1063/1.2172579]
  6. Substrate effects on microstructure and magnetic properties of electrodeposited Co nanowire arrays
    J. Appl. Phys. 99(8), 08Q510-1 [doi: 10.1063/1.2172581]
  7. Fabrication and characterization of suspended single-walled carbon nanotubes
    Solid State Commun. 139(4),  186 [doi: 10.1016/j.ssc.2006.05.028]
  8. Magnetization switching of CoFeSiB free layered magnetic tunnel junctions
    J. Magn. Magn. Mater. 303(2), e223 [doi: 10.1016/j.jmmm.2006.01.041]
  9. Tunneling magnetoresistance and magnetization switching of CoFeSiB free layered magnetic tunnel junctions
    J. Magn. Magn. Mater. 303(2), e231 [doi: 10.1016/j.jmmm.2006.01.063]
  10. Control of magnetic anisotropy of Co nanowires
    J. Magn. Magn. Mater. 303(2), e281 [doi: 10.1016/j.jmmm.2006.01.082]
  11. Magnetic tunnel junctions comprising amorphous NiFeSiB and CoFeSiB free layers
    J. Magn. Magn. Mater. 304(1), 79 [doi: 10.1016/j.jmmm.2006.01.124]
  12. The pH and current density dependence of dc electrodeposited CoCu thin films
    J. Magn. Magn. Mater. 304(1), e100 [doi: 10.1016/j.jmmm.2006.01.191]
  13. Synthesis and magnetic anisotropy of multilayered Co/Cu nanowire array
    J. Magn. Magn. Mater. 304(1), e213 [doi: 10.1016/j.jmmm.2006.02.034]
  14. Magnetization switching of NiFeSiB free layers for magnetic tunnel junctions
    J. Magn. Magn. Mater. 304(1), e258 [doi: 10.1016/j.jmmm.2006.02.052]
  15. Switching characteristics of magnetic tunnel junction with amoprphous CoFeSiB free layer
    J. Magn. Magn. Mater. 304(1), e276 [doi: 10.1016/j.jmmm.2006.02.017]
  16. Material Characterization of Electroplated Nanocrystalline Nickel-Iron Alloys for Micro Electronic Mechanical System
    Jpn. J. Appl. Phys. 45(9A), 7084 [doi: 10.1143/JJAP.45.7084]
  17. Simulation studies of domain wall width changes in various nanoconstriction shapes
    IEEE Trans. Magn. 42(10), 2621 [doi: 10.1109/TMAG.2006.879729]
  18. Experimental and simulation study to identify current-confined path in Cu-Al space layer for CPP-GMR spin-valve applications
    IEEE Trans. Magn. 42(10), 2633 [doi: 10.1109/TMAG.2006.878857]
  19. Bias voltage dependence of magnetic of tunnel junctions comprising double barriers and CoFe/NiFeSiB/CoFe free layer
    IEEE Trans. Magn. 42(10), 2649 [doi: 10.1109/TMAG.2006.879720]
  20. Effect of magnetic field annealing upon Co-rich nanowires
    IEEE Trans. Magn. 42(10), 2778 [doi: 10.1109/TMAG.2006.880459]
  • 2005

  1. Influence of Freelayer in Magnetic Tunnel Junction on Switching of Submicrometer MRAM Arrays
    IEEE Trans. Magn. 41(2), 883 [doi: 10.1109/TMAG.2004.842079]
  2. The pH Dependence of CoCu Alloy Thin Films Fabricated on Amorphous Substrate by DC Electrodeposition
    IEEE Trans. Magn. 41(2), 930 [doi: 10.1109/TMAG.2004.842126]
  3. Switching Behavior of Indium Selenide Based Phase-Change Memory Cell
    IEEE Trans. Magn. 41(2) 1034 [doi: 10.1109/TMAG.2004.842032]
  4. Spin-Valve Effect in an FM/Si/FM Juncion
    J. Mater. Sci.-Mater. El. 16(3), 131 [doi: 10.1007/s10854-005-6590-9]
  5. Suppression of bias voltage dependence in double-barrier magnetic tunnel junctions comprised of freelayers with an amorphous layer insertion
    J. Appl. Phys. 97(10), 10C917-1 [doi: 10.1063/1.1853839]
  6. Switching characteristics of submicrometer magnetic tunnel junction devices with perpendicular anisotropy
    J. Appl. Phys. 97(10), 10C919-1 [doi: 10.1063/1.1854282]
  7. Magnetotransport and interdiffusion characteristics of magnetic tunnel junctions comprising nano-oxide layers upon exposure to postdeposition annealing
    Solid State Commun. 135(6), 348 [doi: 10.1016/j.ssc.2005.05.031]
  8. Magnetization switching and tunneling magnetoresistance effects of synthetic antiferromagnet free layers consisting of amorphous NiFeSiB
    Appl. Phys. Lett. 87(8), 082508-1 [doi: 10.1063/1.2033128]
  9. Electrical and Mechanical Properties of Tantalum Nitride Thin Films Deposited by Reactive Sputtering
    J. Crystal Growth 283(3-4), 404 [doi: 10.1016/j.jcrysgro.2005.06.017]
  10. Magnetization switching and tunneling magnetoresistance effects of MTJs with synthetic antiferromagnet free layers consisting of amorphous CoFeSiB
    IEEE Trans. Magn. 41(10), 2685 [doi: 10.1109/TMAG.2005.855296]
  11. Switching characteristics in magnetic tunnel junctions with a synthetic antiferromagnetic free layer
    IEEE Trans. Magn. 41(10), 2688 [doi: 10.1109/TMAG.2005.855298]
  12. Control of magnetic behavior in Fe3O4 nanostructures
    IEEE Trans. Magn. 41(10), 3304 [doi: 10.1109/TMAG.2005.854907]
  • 2004

  1. Magnetotransport properties in a lateral spin-injection device with an erromagnetic/Si/ferromagnetic junction
    Mater. Sci. Forum 449-452, 1081 [doi: 10.4028/]
  2. Surface Roughness Effects on Bias Voltage Characteristics in CoNbZr-Based Magnetic Tunnel Junction
    J. Magn. Magn. Mater. 272-276, e1481 [doi: 10.1016/j.jmmm.2003.12.616]
  3. Spin Transport in a Lateral Spin-Injection Device with an FM/Si/FM Junction
    J. Magn. Magn. Mater. 272-276, 1915 [doi: 10.1016/j.jmmm.2003.12.1169]
  4. Soft magnetic properties of sub 10 nm NiFe and Co films encapsulated with Ta or Cu
    Phys. Stat. Sol. (a) 201(8), 1859 [doi: 10.1002/pssa.200304601]
  5. Magnetic tunnel junctions stabilized by modified synthetic antiferromagnets
    Phys. Stat. Sol. (a) 201(8), 1676 [doi: 10.1002/pssa.200304600]
  6. Optimization of Ru intermediate layer in CoCr-based perpendicular magnetic recording media
    Phys. Stat. Sol. (a) 201(8), 1763 [doi: 10.1002/pssa.200304631]
  7. Tunnel barrier's property in magnetic tunnel junctions probed by Raman spectroscopy
    Phys. Stat. Sol. (a) 201(8), 1684 [doi: 10.1002/pssa.200304603]
  8. Current aspects and future perspectives of high-density MRAM
    Phys. Stat. Sol. (a) 201(8), 1617 [doi: 10.1002/pssa.200304539]
  9. Skewed ion beam etching: a simple method to obtain a reduction in critical dimensions for magnetoelectronic sensors
    Sensors and Actuators A 113(2), 236 [doi: 10.1016/j.sna.2004.03.003]
  10. Spin-valves with modified synthetic antiferromagnets exhibiting an enhanced bias point control capability at submicrometer dimensions
    J. Magn. Magn. Mater. 279(1),  L1 [doi: 10.1016/j.jmmm.2004.04.124]
  11. Anomalous switching in submicrometer magnetic tunnel junction arrays arising from magnetic vortex and domain wall pinning
    J. Appl. Phys. 96(3), 1748 [doi: 10.1063/1.1765852]
  12. Technological Issues for High-Density MRAM Development
    J. Magn. Magn. Mater. 282, 232 [doi: 10.1016/j.jmmm.2004.04.052]
  • 2003

  1. Interface and Microstructure Evolutions in Synthetic Ferrimagnet-Based Spin-Valves upon Exposure to Postdeposition Annealing
    J. Appl. Phys. 93(10), 7924 [doi: 10.1063/1.1540158]
  2. Characteristics of Magnetic Tunnel Junctions Consisting of Amorphous CoNbZr Layers
    J. Appl. Phys. 93(10), 8361 [doi: 10.1063/1.1558240]
  3. Effect of Zr concentration on the microstructure of Al and the magnetoresistance properties of the magnetic tunnel junction with a Zr-alloyed Al-oxide barrier
    Appl. Phys. Lett. 83(2), 317 [doi: 10.1063/1.1592312]
  4. Investigation of Magnetoresistive Characteristics of Metallic Multilayers Comprising Ru-Based Synthetic Antiferromagnetic Layer 
    J. Kor. Phys. Soc. 43(3), 396 [doi: 10.3938/jkps.43.396]
  5. Analysis on Giant Magnetoresistive Characteristics of Synthetic Antiferromagnet-Based Spin-Valves With Modified Pinned Layer
    IEEE Trans. Magn. 39(5), 2399 [doi: 10.1109/TMAG.2003.815462]
  6. Thermal and Mn Diffusion Behaviors of CoNbZr Based Spin Valves With Nano-oxide Layer
    IEEE Trans. Magn. 39(5), 2824 [doi: 10.1109/TMAG.2003.815724]
  • 2002

  1. Microstructural Evolution and Phase Transformation Characteristics of Zr-doped FePt Films
    J. Appl. Phys. 91(10), 6857 [doi: 10.1063/1.1447490]

  2. Exchange Coupling Characteristics of Bottom-Type Synthetic Ferrimagnet Based Spin Valve Films
    J. Appl. Phys. 91(10), 7107 [doi: 10.1063/1.1455603]
  3. Thermal Stability of Spin-Valves Incorporating Amorphous CoNbZr Under and Capping Layers
    J. Appl. Phys. 91(10), 8581 [doi: 10.1063/1.1447298]
  4. Detection of dc Voltages Generated in Multilayered Magnetic Thin Films Undergoing Ferromagnetic Resonance
    J. Kor. Phys. Soc. 41 (1), L1 [doi: 10.3938/jkps.41.1]
  5. Parametric Sensitivity Analysis on the Giant Magnetoresistive Characteristics of Synthetic Antiferromagnet-Based Spin-Valves
    J. Magn. Magn. Mater. 250, 25 [doi: 10.1016/S0304-8853(02)00408-0]
  6. Interlayer Diffusion and Specularity Aspects of Amorphous CoNbZr-Based Spin-Valves
    IEEE Trans. Magn. 38(5), 2685 [doi: 10.1109/TMAG.2002.803155]
  7. Magnetic and Magnetoresistance Properties of Synthetic Spin Valves with Different Pinning Layer Thicknesses
    J. Kor. Phys. Soc. 41(5), 753 [doi: 10.3938/jkps.41.753]
  • 2001

  1. Microstructural Evolution in PtMn-Based Spin-Valves Induced by Heat Treatment
    J. Magn. Magn. Mater. 226(Part2), 2070 [doi: 10.1016/S0304-8853(00)00765-4]
  2. Magnetoresistance and Interlayer Diffusion in PtMn Spin Valves upon Postdeposition Annealing
    J. Appl. Phys. 89(11), 6907 [doi: 10.1063/1.1361260]
  3. Rapid Ordering of Zr-Doped FePt Alloy Films
    Appl. Phys. Lett. 78(24), 4001 [doi: 10.1063/1.1379591]
  4. Permeability enhancement in Fe/CoNbZr Multilayers Prepared by Ar/H2 Mixed Gas Sputtering and Heat Treatment
    J. Magn. Magn. Mater. 233(3), L142 [doi: 10.1016/S0304-8853(01)00354-7]
  • 2000

  1. Magnetically Soft and Electrically Resistive CoNiFeS Alloy Films Prepared by Electrodeposition 
    J. Appl. Phys. 87(9), 5413 [doi: 10.1063/1.373360]
  2. Effects of Substrate Surface Topology on NiFe/Cu/Co Spin Valve Characteristics 
    Jpn. J. Appl. Phys. 39(1-8), 4767 [doi: 10.1143/JJAP.39.4767]
  3. Design of Recessed Yoke Heads for Minimizing Adjacent Track Encroachment
    IEEE Trans. Magn. 36(5), 2524 [doi: 10.1109/20.908493]
  4. Exchange Anisotropy and Thermal Properties of. Mn-Ir-Pt Exchange-Biased Layer
    IEEE Trans. Magn. 36(5), 2569 [doi: 10.1109/20.908512]
  5. MR Characteristics of Synthetic Ferrimagnet Based Spin-Valves With Different Pinning Layer Thickness Ratios
    IEEE Trans. Magn. 36(5), 2857 [doi: 10.1109/20.908608]
  6. Structural and Magnetoresistance Characteristics of CoFe/Ag/NiFe/Ag Composite Discontinuous Multilayers
    Appl. Phys. Lett. 77(26), 4199 [doi: 10.1063/1.1334946]
  • 1999

  1. Switching Characteristics of Spin Valve Devices Designed for MRAM applications
    J. Magn. Magn. Mater. 198(199), 6 [doi: 10.1016/S0304-8853(98)00590-3]
  2. Writing Characteristics of Pole-Trimmed MR Heads Comprising Composite Shared Poles
    IEEE Trans. Magn. 35(5), 2505 [doi: 10.1109/20.800873]
  3. Mathematical Modeling and Measurement of Etching Profile for Junction Shape Control in MR Read Heads
    IEEE Trans. Magn. 35(5), 2601 [doi: 10.1109/20.800906]
  • 1998

  1. Magnetic Changes in GMR Heads Caused by Electrostatic Discharge
    IEEE Trans. Magn. 34(4), 1519 [doi: 10.1109/20.706602]
  2. Recording at 300 KFCI with Perpendicular Co-alloy Multilayers
    IEEE Trans. Magn. 34(4), 1854 [doi: 10.1109/20.706725]
  • 1997

  1. Nonlinear Optical Investigations of Magnetic Heterostructures
    J. Appl. Phys. 81(8), 4354 [doi: 10.1063/1.364820]
  2. Electrostatic Discharge Sensitivity of Giant Magnetoresistive Recording Heads
    J. Appl. Phys. 81(8), 4921 [doi: 10.1063/1.364819]
  3. Data Storage and Retrieval Using Perpendicular Media and Magnetoresistive Read Transducer
    IEEE Trans. Magn. 33(4), 2538 [doi: 10.1109/20.595913]
  4. FeN/Ta Multilayers: Magnetic Properties and Application to Magnetic Recording Heads 
    IEEE Trans. Magn. 33(5), 2815 [doi: 10.1109/20.617740]
  5. Role of Medium Noise in Recording with CoCrTa/Pt Multilayers 
    IEEE Trans. Magn. 33(5), 3082 [doi: 10.1109/20.617851]
  6. Field Angle and Current Density Effects in Submicrometer Spin Valves for Digital Applications
    IEEE Trans. Magn. 33(5), 3292 [doi: 10.1109/20.617921]
  7. High Current-Density Measurements of GMR Spin-Valves for Magnetic Recording and Sensor Applications
    IEEE Trans. Magn. 33(5), 3541 [doi: 10.1109/20.619491]
  8. Low-Frequency Noise in NiFe/Cu Spin-Valves
    IEEE Trans. Magn. 33(5), 3586 [doi: 10.1109/20.619505]
  9. Second-Harmonic Magneto-Optic Kerr Effect from Spin-Valve Test Structures: Correlation with Magnetoresistance Response
    IEEE Trans. Magn. 33(5), 3598 [doi: 10.1109/20.619509]
  10. A Personal Computer Based Semi-Analytical Micromagnetics Design Tool
    IEEE Trans. Magn. 33(5), 4119 [doi: 10.1109/20.619682]
  11. Recording Performance of a Giant Magnetoresistive Head on a Perpendicular Multilayer Medium
    IEEE Trans. Magn. 33(5), 4411 [doi: 10.1109/20.620454]
  • 1996

  1. MR Head Wafer Fabrication Technology: Current and Future Perspectives
    IEEE Trans. Magn. 32(1), 25 [doi: 10.1109/20.477545]
  2. Observation of the Transverse Second-Harmonic Magneto-Optic Kerr Effect from Ni81Fe19 Thin Film Structures
    Appl. Phys. Lett. 68(11), 1573 [doi: 10.1063/1.115703]
  3. Magnetostriction Characteristics of Ultrathin Permalloy Films
    Appl. Phys. Lett. 68(20), 2885 [doi: 10.1063/1.116320]
  4. Deposition Condition and Thickness Dependence on Magnetic Properties of Sputtered NiFeCo Thin Films
    J. Appl. Phys. 79(8), 5446 [doi: 10.1063/1.362333]
  5. Giant Magnetoresistance and high sensitivity in Annealed NiFeCo/Ag Multilayers 
    J. Appl. Phys. 79(8), 5584 [doi: 10.1063/1.362249]
  6. Modeling Effects of Temperature Annealing on Giant Magnetoresistive Response in Discontinuous Multilayer NiFe/Ag Films
    J. Appl. Phys. 79(8), 5596 [doi: 10.1063/1.362253]
  7. Simulating Device Size Effects on Magnetization Pinning Mechanisms in Spin Valves
    J. Appl. Phys. 79(8), 6386 [doi: 10.1063/1.362692]
  8. Transverse and Logitudinal Second-Harmonic Magneto-Optic Kerr Effect Observed from Ni81Fe19 Thin Film Structures
    IEEE Trans. Magn. 32(5), 4087 [doi: 10.1109/20.539272]
  9. NiO Exchange Bias Layers Grown by Direct Ion Beam Sputtering of a Nickel Oxide Target
    IEEE Trans. Magn. 32(5), 4651 [doi: 10.1109/20.539107]
  10. Simulated Magnetoresistive Behavior of Geometrically Assymmetric Spin Valves
    IEEE Trans. Magn. 32(5), 4606 [doi: 10.1109/20.539093]
  11. Identifying Phenomenological Magnetoresistive Properties of Spin Valves 
    IEEE Trans. Magn. 32(5), 4609 [doi: 10.1109/20.539094]
  12. Magnetostatic Effects in Giant Magnetoresistive Spin-Valve Devices 
    Appl. Phys. Lett. 69(25), 3935 [doi: 10.1063/1.117575]
  • 1995

  1. Magnetostriction and Giant Magnetoresistance in Annealed NiFe/Ag Multilayers
    Appl. Phys. Lett. 66(8), 1009 [doi: 10.1063/1.113588]
  2. Magnetic, Microstructural, and Compositional Characterization of Fe-N Thin Films for Recording Sensor Applications
    J. Vac. Sci. Technol. A 13(3), 1040 [doi: 10.1116/1.579581]
  3. Magnetoresistance of Thin-Film NiFe Devices Exhibiting Single-Domain Behavior
    IEEE Trans. Magn. 31(6), 3358 [doi: 10.1109/20.490381]
  4. Unidirectional Anisotropy in Exchange Coupled NiFe/FeMn System for Thin NiFe Films
    IEEE Trans. Magn. 31(6), 3823 [doi: 10.1109/20.489784]
  5. Low Magnetostriction in Annealed NiFe/Ag Giant Magnetoresistive Multilayers
    IEEE Trans. Magn. 31(6), 3964 [doi: 10.1109/20.489831]
  • 1994

  1. Magnetic Properties of Reactively Sputtered Fe1-xO and Fe3O4 Thin Films
    J. Appl. Phys. 75(1), 431 [doi: 10.1063/1.355869]
  2. Magnetic Properties and Texture of Sputtered Fe/Fe3O4 Multilayer Films
    IEEE Trans. Magn. 30(3), 1316 [doi: 10.1109/20.297770]
  3. Stress, Microstructure and Materials Reliability of Sputter-Deposited Fe-N Films
    IEEE Trans. Magn. 30(6), 3921 [doi: 10.1109/20.333944]
  • 1993

  1. Magnetic Properties of Sputtered Fe Thin Films: Processing and Thickness Dependence 
    J. Appl. Phys. 74(2), 1233 [doi: 10.1063/1.354926]

Research Staffs


Surface Science, Nanomaterials for bio-medical application, Nano-bio Engineering

Yu Jin 

  • Mar. 1997 - Aug. 2003 
    B.S. & M.S., Myongji University
  • Mar. 2004 - Feb. 2009 
    Ph.D., Nano Science & Engineering, Myongji University
  • Nov. 2009 - Dec. 2011 
    Postdoctoral Fellow, Institute of Innovative Functional Imaging, Chung-Ang University
  • Jan. 2012 - present 
    Research Professor, Institute for Converging Technology, Korea University


Bum Chul Park,

  • Mar. 2006 - Feb.2012

    B.S., Div. of Materials Sci. & Eng., KU

  • Sep. 2012 - Aug. 2018
    Ph.D, Materials Science and Engineering, Ku
  • Sep. 2018 - Present

    Research Professor, Research Institute of engineering and technology, Korea University

Nanowire, Nanoparticle

Yoo sang Jeon,

  • Mar. 2010 - Feb.2014

    B.S., Div. of Materials Sci. & Eng., KU

  • Mar. 2014 - Feb. 2020
    Ph.D, Materials Science and Engineering, Ku
  • Feb. 2020 - Present

    Research ProfessorResearch Institute of engineering and technology, Korea University


Nanomaterials (Nanoparticles, nanowires, nanotubes, thin films), Spintronics, Multilayers

Dr. Jun-Hua Wu(吳君华)

  • Mar. 1980 - Feb. 1988 
    B.S. & M.S., Tsinghua University, Beijing
  • Oct. 1993 - Apr. 1997 
    Ph.D., Max-Plank Institute for Polymer Research & University of Mainz, Germany 
  • Mar. 1997 - Feb. 1999 
    IBM Postdoctoral Fellow, IBM Research Division, Almaden Research Center, San Jose 
  • Feb. 1999 - Jul. 2001 
    Staff Development Engineer, Seagate Technology, RMO, R&D, Fremont
  • Jul. 2001 - Nov. 2001 
    Senior Engineer, Microstor Corporation/GS Magicstor, San Jose, California
  • Nov. 2001 - Aug. 2005 
    Senior Research Scientist, Temask Laboratories, National University of Singapore
  • Aug. 2005 - Feb. 2008 
    Associated Research Professor, Research Institute of Engineering & Technology, Korea University
  • Jul. 2008 - Feb. 2014
    Research Professor, Pioneer Research Center for Biomedical Nanocrystals, Korea University
  • Aug. 2014
    South University of Science and Technology of China
  • Present
    Nobel Laureate Peter Grunberg Research Center, Najing University of Telecommunications and Posts


Dr. Qunxian Liu,

  • Sep. 1983 - Jul. 1987 
    B.S., Beijing Institute of Iron and Steel Technology 
  • Sep. 1989 - Apr. 1992 
    M.S. & Ph.D, Beijing University of Science and Technology 
  • Jul. 1992 - Aug. 1998 
    Central Iron and Steel Research Institute 
  • Jan. 2003 - Jan. 2004 
    Hungarian Academy of Science 
  • Feb. 2004 - Feb. 2005 
    Assistant Research Professor, Research Institute of Engineering & Technology, Korea University
  • Mar. 2005 - 2008
    Technical University of Clausthal, Germany 
  • 2008 - present
    MacDermid Enthone, Shanghai, China

Semiconductor Processing, Mechanical Properties of Thin Films

Dr. DeokKee Kim,

  • Mar. 1989 - Feb. 1993 
    B.S., Dept. of Metallurgical Eng. SNU 
  • Sep. 1995 - Dec. 2000 
    M.S. & Ph.D, Materials Eng. Stanford University  
  • Dec. 2000 - 2006 
    Staff Engineer, IBM SRDC, Hope well Juntion, NY 
  • Nov. 2004 - Jun. 2005 
    Assistant Research Professor, Center for Nano Science, Korea University 
  • 2007 - 2011 
    Samsung Advanced Institute of Technology 
  • 2011 - present 
    Associate professor, Department of Electronics Engineering, Sejong University

Nanomaterials (Thin films, Nanoparticles, Nanowires, Nanotubes), Stereochemistry, Biology

Dr. Hong-Ling Liu (刘红玲),

  • Sep. 1985 - Jun. 1989 
    B.S., Wuhan University, Wuhan 
  • Jul. 1989 - Aug. 1993 
    Teaching Assistant, Chem. School Kaifeng  
  • Aug. 1993 - Mar. 1996 
    M.S., Okayama Universitiy, Japan   
  • Nov. 1997 - Oct. 2001 
    Senior Lecturer, Hunan University, China 
  • Apr. 2002 - Mar. 2005 
    Ph.D, Okayama University, Japan 
  • Apr. 2005 - Oct. 2005 
    Research Associate, Okayama University, Japan 
  • Oct. 2005 - May. 2008 
    Assistant Research Professor, Center for Nano Science, Korea University 
  • May. 2008 - present 
    Associate professor, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, China 

Thin Film Growth & Structure/Surface Characterization, Semiconductor Fabrication Processing   

Dr. TianXing Wang (王天兴),

  • Sep. 1992 - Jul. 1996 
    B.S., (Department of Physics) Henan Normal University, Xinxiang, China 
  • Sep. 1996 - Jul. 2000 
    Teacher (Senior middle school physics) The first senior middle school, Yuzhou, China 
  • Sep. 2000 - Jul. 2003 
    M.S., (Condensed matter Physics) Henan Normal University, Xinxiang, China 
  • Sep. 2003 - Jul. 2006 
    Ph.D, (Condensed matter Physics) State Key Lab of Magnetism, Institute of Physics, Chinese Academy of Science, China 
  • Sep. 2006 - Jul. 2008 
    Research Scientist, MSE department, Korea University 
  • Aug. 2008 - present 
    Senior Research Scientist, Temask Laboratories, National University of Singapore 
  • Aug. 2005 - present 
    Associated Research Professor, College of Physics and Information Engineering, Henan Normal University, China   

Transport properties of nanostructures Magnetization process 

Dr. Reasmey Tan,

  • Sep. 1999 - Jun. 2004 
    B.S. & M.S., University Paul Sabatier, France 
  • Sep. 2004 - Jan. 2008 
    Ph.D, National Institute of Applied Sciences, France 
  • Jul. 2008 - Dec. 2009 
    Associate Research Professor, MSE department, Korea University 
  • Dec. 2009
    Post Doc., Laboratoire de physique et chimie de nano-objets (LPCNO), Institute National des Sciences Appliquees, France 
  • Present
    Institut National des Sciences Appliqu


    es de Toulouse, Toulouse, France


Dr. Soo Hyo Kim,

  • Mar. 2002 - Feb.2006

    B.S., Dept. of Advanced Materials Chemistry, KU

  • Sep. 2007 - Feb. 2010

    M.S., Institute-Academia Course(KU-KTL)

  • Sep. 2010 - Aug. 2016
    Ph.D., Dept. of Advanced Materials Eng., KU
  • Aug. 2016
    Research Professor, Dept. of Materials Science and Eng., KU
  • Present

Graduate Course

Electronic Materials Thin Film Engineering (AMSE 616, Graduate, Fall)

  • Theme : This course is designed to cover two technological aspects relevant to modern thin-films used in mechanical, electronic, magnetic, and optical applications: first, thin film processing, structures, and reactions, and second, physical properties of selected films. Throughout this course, an emphasis will be given on understanding of the 'processing-structure-property' relationship in thin film materials and devices.

  • Reference

Undergraduate Course

Converging Technologies and Advanced Materials (AMSE 419, Undergraduate, Spring)


  • Theme : Future high-technology industry will rapidly grow through technology convergence between IT, BT, ET, CS and NT serves as a platform technology. This lecture will discuss technology policy, R&D cases, and advanced materials relevant to converging technologies.
  • Reference



Thin Film Engineering (AMSE 326, Undergraduate, Fall)


  • Theme : This course introduces the principles of micro/nano fabrication technology and materials science of thin films for modern electronic devices. Basic thin film processing technologies such as lithography, oxidation, diffusion, thin film deposition, and other related topics will be covered.

  • Reference


1. Spin-Orbitronic Materials & Devices

Spin-Orbitronic Materials Discovery for Next-Generation Memory

  • Purpose: Discovery of new materials for ultra-low power and high-speed nonvolatile memory applications
  • Role: Principal Investigator & Center Director
  • Sponsor: Ministry of Science and ICT (National Research Foundation of Korea), Samsung Electronics

Spin-Orbitronic Devices for Security Chip Application’

  • Purpose: Development of Low Power Information Security Chip Based on Novel Devices
  • Role: Participating Researcher
  • Sponsor: Ministry of Science and ICT (National Research Foundation of Korea)

Representative papers

  1. Kim, Yong Jin, et al., "CoFeSiB–Pd multilayers and co-deposited alloy films exhibiting perpendicular magnetic anisotropies after heat treatment up to 500° C." Acta Materialia 125, 196-201 (2017)
  2. Cha, In Ho, et al., "Thickness and composition-dependent spin-orbit torque behaviors in perpendicularly magnetized Ta/W (t)/CoFeB and Ta1-xWx/CoFeB junction structures." Journal of Alloys and Compounds 823, 153744 (2020)
  3. Kim, Gyu Won, et al., "Role of the Heavy Metal’s Crystal Phase in Oscillations of Perpendicular Magnetic Anisotropy and the Interfacial Dzyaloshinskii-Moriya Interaction in W/Co− Fe− B/MgO Films." Physical Review Applied 9(6), 064005 (2018)

2. Functional Nanomaterials for Biomedical Technology

‘Development of Metal and Metal-Oxide Based Composite Scaffolds for Anticancer Immunotherapy’

  • Purpose: Development of composite scaffolds for anticancer immunotherapy
  • Role: Principal Investigator 
  • Sponsor: Ministry of Science and ICT (National Research Foundation of Korea)

Development of Innovative Technology for Highly Sensitive in vitro Diagnostics Based on Multifunctional Nanoparticles

  • Purpose: Development of highly sensitive in vitro diagnostics
  • Role: Participating Researcher
  • Sponsor: Ministry of Trade, Industry and Energy (Korea Evaluation Institute of Industrial Technology), AmoLifeScience

Representative papers

  1. Park, Bum Chul, et al., "Strategy to control magnetic coercivity by elucidating crystallization pathway-dependent microstructural evolution of magnetite mesocrystals." Nature communications 11, 298 (2020)
  2. Sharma, Prashant, et al., "Application of radially grown ZnO nanowires on poly-L-lactide microfibers complexed with a tumor antigen for cancer immunotherapy." Nanoscale 11(10), 4591-4600 (2019)

3. Nano-Scale Materials for Advanced IC metallization

‘Development of Low Resistance Materials Based on the Electrochemical Process’

  • Purpose: Development of low-resistance materials for interconnects
  • Role: Principal Investigator
  • Sponsor: Samsung Research Funding & Incubation Center for Future Technology

Representative papers

  1. Samardak, Aleksei Yu, et al., "Magnetization reversal of ferromagnetic nanosprings affected by helical shape." Nanoscale 10(43) ,20405-20413 (2018)

  2. Jeon, Yoo Sang, et al., "Synthesis of Co nanotubes by nanoporous template-assisted electrodeposition via the incorporation of vanadyl ions." Chemical Communications 53(11), 1825-1828 (2017)

  3. Yoo, Eunmin, et al., "Electrical resistivity and microstructural evolution of electrodeposited Co and Co-W nanowires." Materials Characterization 166, 110451 (2020)




고려대학교 신소재공학과 정보소자재료연구실 홈페이지(이하 '정보소자재료연구실 홈페이지')는 개인정보보호법에 따라 이용자의 개인정보 보호 및 권익을 보호하고 개인정보와 관련한 이용자의 고충을 원활하게 처리할 수 있도록 다음과 같은 처리방침을 두고 있으며 개정하는 경우 웹사이트 공지사항(또는 개별공지)을 통하여 공지할 것입니다.

1. 정보소자재료연구실 홈페이지의 개인정보 처리방침은 고려대학교의 개인정보 처리방침을 준용하여 적용됩니다
 고려대학교 '개인정보 처리방침'의 위치 : 고려대학교 홈페이지 ( 하단

2. 이외 정보소자재료연구실 홈페이지의 회원관리를 위해 수집, 이용되는 개인정보는 다음과 같이 처리되어 집니다.
1) 개인정보의 수집, 이용 목적 : 홈페이지를 통한 수업 및 연구 관련 Q&A, 연구결과 홍보
2) 수집하려는 개인정보의 항목
필수항목 : 아이디, 성명, 비밀번호, 연락처, 이메일주소, 소속 연구원 프로필
3) 개인정보의 보유 및 이용 기간 : 회원 탈퇴시까지