고려대, 차세대 메모리(MRAM)의 숨겨진 물리 현상 규명 (Prof. Kim’s group reported a spin-orbit coupling phenomenon that can affect the function of MRAM)

▲ 고려대 김영근 교수(왼쪽)와 김태현 박사과정 (사진=고려대)

고려대학교(총장 정진택) 공과대학 신소재공학부 김영근 교수 연구팀이 차세대 자기메모리(MRAM) 개발과 구동 원리를 이해하는데 필수적인 비대칭 교환결합력을 측정하고 그 원인을 밝혀냈다. 비대칭 교환결합력이란 비자성 박막과 자성 박막의 접합구조에서 나타나는 스핀 현상이다.

자기메모리(MRAM)는 다층의 자성 박막을 이용하여 정보를 저장하고 처리하는 메모리 소자로서 전원을 꺼도 정보를 기억하는 비휘발성 특성이 있으며, 최근 스핀전달토크(spin transfer torque, STT) 기록 방식의 MRAM이 상용화되었다. 차세대 MRAM 경우, 스핀궤도토크(spin-orbit torque, SOT)를 이용하는 방식이 동작 속도와 에너지 효율 측면에서 유리할 것으로 기대되어 세계 곳곳에서 경쟁적으로 개발하고 있다.

스핀전달토크의 구동속도와 스위칭 전류밀도는 비대칭 교환결합력의 크기와 방향에 따라 크게 영향을 받는 것으로 알려져, 비대칭 교환결합력이 발생하는 원리를 이해하는 것이 중요하다. 그러나 스핀궤도토크의 경우, 비대칭 교환결합력의 크기와 방향이 스위칭에 미치는 영향이 거의 알려진 바 없어 추가적인 연구가 필요하다.

스핀-궤도 상호작용이 강한 금속층과 자성층 사이에 수 나노미터 두께의 초박막 산화물 계면층을 넣어주면 두께에 따라 비대칭 교환결합력의 세기가 진동하는 현상을 발견했다. 이는 초박막 산화물의 반도체적 특성 변화에 의한 것임을 확인하였으며, 산화물 계면층의 밴드갭 에너지에 따른 비대칭 교환결합력의 변화를 이론적으로 규명했다. 이에 따라 계면 산화층의 두께에 따른 비대칭 교환결합력의 세기를 측정하고 이론적으로 규명하여 스핀-궤도결합 원리 규명에 실마리를 제공할 것으로 기대된다.

과학기술정보통신부 원천기술개발사업(미래소재디스커버리사업) 지원으로 수행된 이번 연구의 성과는 국제학술지 네이처 커뮤니케이션스(Nature Communications)에 게재됐다.

▲ 산화마그네슘 두께에 따른 자기이방성과 비대칭 교환결합력의 변화두께를 달리한 산화마그네슘 층을 비자성층/강자성층 사이에 넣은 경우, (a) 수직 방향, (b) 수평 방향으로의 자기이방성과 (c) 산화마그네슘 두께에 따른 비대칭 교환결합력.
▲ 산화 마그네슘 두께에 따른 스핀 특성 모식도(a)중금속(HM)과 강자성(FM) 사이 산화마그네슘의 두께에 따른 스핀의 정렬 방향을 나타내는 모식도, (b)이론적으로 계산한 MgO 두께에 따른 비대칭 교환결합력으로 실험 결과와 합치하는 결과, (c)계산할 때 사용하는 상수에 따라 위상이 변화될 수 있음을 나타내는 이론 계산 결과, (d)산화마그네슘보다 더 작은 밴드갭을 갖는 금속 층을 활용했을 때 비대칭 교환결합력 이론 계산 결과 (이미지=고려대)

출처: 에너지경제신문, 2021.06.02, https://www.ekn.kr/web/view.php?key=20210602010000438

Ruderman–Kittel–Kasuya–Yosida-type interfacial Dzyaloshinskii–Moriya interaction in heavy metal/ferromagnet heterostructures
Nature Communications 12, 3280 (2021)
[DOI: https://doi.org/10.1038/s41467-021-23586-y]

The manipulation of magnetization with interfacial modification using various spin-orbit coupling phenomena has been recently revisited due to its scientific and technological potential for next-generation memory devices. Herein, we experimentally and theoretically demonstrate the interfacial Dzyaloshinskii–Moriya interaction characteristics penetrating through a MgO dielectric layer inserted between the Pt and CoFeSiB. The inserted MgO layer seems to function as a chiral exchange interaction mediator of the interfacial Dzyaloshinskii–Moriya interaction from the heavy metal atoms to ferromagnet ones. The potential physical mechanism of the anti-symmetric exchange is based on the tunneling-like behavior of conduction electrons through the semi-conductor-like ultrathin MgO. Such behavior can be correlated with the oscillations of the indirect exchange coupling of the Ruderman–Kittel–Kasuya–Yosida type. From the theoretical demonstration, we could provide approximate estimation and show qualitative trends peculiar to the system under investigation.

 

 

2021년도 춘계 대한금속재료학회 (2021 Spring Conference of the Korean Institute of Metals and Materials)

대학원생 고민준, 구명석, 박현수, 김승현이 2021428~30일 강원도 웰리힐리파크에서 개최된 대한금속재료학회 춘계학술대회에 참석하였다. 김영근 교수는 이번 학술대회 공동조직위원장이었다. 이번 학술대회에서 김승현, 고민준, 박현수는 각각 재료조직사진상 우수상, 학생 구두발표 우수상, 학생 포스터발표 우수상을 수상하였다.

Graduate students, Mr. M. J. Ko, Mr. T. M. Koo, Mr. H. S. Park, and Mr. S. H. Kim attended the conference held in Welli Hilli Park, Gangwon-do, Korea on April 28~ 30, 2021. Prof. Kim was the Conference Co-Chair. S. H. Kim, M. J. Ko, H. S. Park received the Best Material Structure Image Award, the Best Oral Presentation Award, and the Best Poster Presentation Award, respectively.

김영근 교수 제16대 한국자기학회장에 취임 (Prof. Young Keun Kim is inaugurated as the 16th President of The Korean Magnetics Society)

김영근 교수가 제16대 한국자기학회(https://www.magnetics.or.kr/) 회장에 취임한다. 임기는 2021 1월부터 2년이다.

출처: "[사랑방] 김영근 고려대학교 신소재공학부 교수 外", 중앙일보, 2020 12 31, news.joins.com/article/23958653”

Prof. Young Keun Kim is inaugurated as the 16th President of The Korean Magnetics Society (https://www.magnetics.or.kr/) for two years starting January 2021 for two years.

고려대 김영근 교수팀, 새로운 형태의 폐수처리용 메조결정 개발 (Prof. Kim’s group has developed multi-component mesocrystalline nanoparticles with enhanced photocatalytic activity applicable for purifying a large amount of wast..

▲ 왼쪽부터 김영근 교수(교신저자), 고민석 박사과정생(제1저자)

 

공과대학 신소재공학부 김영근 교수 연구팀이 자성과 광촉매 특성을 동시에 갖춘 다성분 메조결정 나노입자를 개발하여 높은 효율로 오염수에 존재하는 난분해성 유기오염물질을 분해하고 재사용할 수 있음을 확인했다.
  * 메조결정(mesocrystal) : 아주 작은 단위결정들이 모여 큰 크기를 이루는 결정 구조를 의미함. 기존에는 단위결정의 특성과 단위결정 사이의 상호작용에 관한 연구가 관심을 받고 있었으나, 지금까지 보고된 메조결정은 대부분 한 종류의 결정으로만 이루어져 그 응용분야가 한정되었음.

오염수에는 쉽게 분해되지 않는 플라스틱 첨가제, 살충제, 살균제를 포함한 유기오염물질이 많이 존재하고 있다. 이러한 오염물질을 효과적으로 제거하기 위하여 오존 산화, 과산화수소 광분해, 펜톤(Fenton) 산화기술 등에 관한 연구가 진행됐다. 그러나, 높은 제조 및 처리비용, 수용액에서의 응집, 사용한 촉매의 분리와 재사용의 어려움으로 한계가 있었다.

연구진은 산화철(Fe3O4) 메조결정에 폴리아크릴레이트 (polyacrylate)를 코팅하여 고분자 중합 유도 성장을 이용하여 산화철(Fe3O4), 아연페라이트(ZnFe2O4), 산화아연(ZnO) 세 가지 종류의 단위결정으로 구성된 다성분 메조결정 나노입자를 합성했다.
  * 폴리아크릴레이트 : 아크릴산이 중합된 고분자로 나노결정 표면에 붙어 금속 이온을 흡착하고, 뛰어난 수용액 분산성을 제공함

다성분 메조결정 나노입자는 자외선이 아닌 가시광선을 흡수하여 과산화수소(H2O2)를 수산화 라디칼(ˑOH)로 분해하여 유기오염물질 모델로 사용된 메틸렌 블루(Methylene Blue)분자를 1시간 내에 모두 분해하는 특성을 보였다. 다성분 메조결정 나노입자는 선행연구에서 사용된 촉매소재 대비 20분의 1 낮은 농도에서 비슷하거나 더 뛰어난 특성을 보이며, 자기장으로 회수하여 5회 재사용하는 과정에서 광촉매 특성과 분산 안정성이 유지됨을 확인했다.
 * 광-펜톤(photo-Fenton) 반응: 철 이온이 존재하면 과산화수소의 분해가 촉진되어 수산화 라디칼을 형성하는 반응을 펜톤 반응이라고 하는데, 보통 촉매로 사용되는 Fe2+이온이 사용되어 Fe3+ 이온이 되면 반응이 일어나지 않아 광 여기 전자를 이용하여 Fe3+ 이온을 Fe2+ 이온으로 환원시켜 펜톤 반응보다 지속적이고 더 높은 처리효율을 가짐
 * 수산화 라디칼: 수산화이온(OH-)의 중성형태로 활성산소종 중 가장 반응성이 높고 산화력이 강해 난분해성 유기오염물질을 분해함

연구팀은 “다성분 메조결정 나노입자는 태양광을 이용한 광촉매 활성과 자기장으로 회수한 이후에도 오염수에 쉽게 분산되는 성질을 가지고 있어 대량의 오염수를 동시에 처리하고 재활용할 수 있으며, 기존 사용되는 촉매들의 한계점으로 지적되는 높은 제조 및 처리비용, 사용한 촉매의 분리 및 2차 오염의 문제를 해결할 가능성이 있다.”라고 연구의 의의를 설명했다.

이번 연구 성과는 과학기술정보통신부 중견연구자 지원사업과 산업통상자원부 핵심소재부품기술개발사업의 지원으로 수행됐다. 나노기술 분야 국제학술지인 스몰(Small)에 현지시간 12월 22일자 표지 논문으로 게재됐다.

 

 

▲ (그림1) 다성분 메조결정 나노입자의 합성과정. (a)폴리아크릴레이트를 이용한 고분자 중합 유도 이종 핵 생성 및 성장과정. (b)합성한 다성분 메조결정 나노입자의 투과전자현미경 이미지.
▲ (그림2) 다성분 메조결정 나노입자를 이용한 광촉매 특성. (a)다성분 메조결정 나노입자의 수산화 라디칼 생성 메커니즘. (b)가시광을 이용한 다성분 메조결정 나노입자의 유기오염물질 분해능. (c)재사용 테스트 결과. (이미지=고려대)

출처: "고대뉴스, 2020 12 24,

 

고대소식|고대뉴스|연구

연구창의적 미래 인재 양성, 세계를 변화시키는 대학 인쇄하기 글자크기 확대 축소

www.korea.ac.kr

 

Multi-Component Mesocrystalline Nanoparticles with Enhanced Photocatalytic Activity
Small 16, 2004696 (2020)
[DOI: https://doi.org/10.1002/smll.202004696]

Mesocrystals, consisting of small subunits, have gained research interests owing to their ability to simultaneously modify material-specific properties and interactions among subunits. However, despite these unique characteristics, most mesocrystals are composed of a single material, and there is a disjunction between academic discovery and practical application. In this study, the synthesis of multi-component mesocrystalline nanoparticles composed of Fe3O4, ZnFe2O4, and ZnO subunits using a polymerization induced heterogeneous nucleation method is reported. The structure has small ZnFe2O4 and ZnO nanocrystals covering the Fe3O4 crystallites. It exhibits not only magnetic and catalytic properties determined by the size of each subunit nanocrystal, but also enhances photocatalytic and colloidal properties that originates because of its crowded arrangement. The magnetically recoverable catalysts exhibit remarkable photodegradation of organic molecules under the irradiation of visible light for 1 h; thus, improving its applicability in purifying a large amount of wastewater during the daytime.

고려대학교 김영근 교수팀, 암전이 예측 및 치료제 개발을 위한 나노구조의 EMT 유도 검증 (Association between Cell Microenvironment Altered by Gold Nanowire Array and Regulation of Partial Epithelial-Mesenchymal Transition)

고려대학교(총장 정진택)는 공과대학 신소재공학부 김영근 교수 연구팀이 전착 방법으로 성장시킨 금(gold) 나노선 어레이를 이용하여 세포성장이 가능한 미세환경을 구성하였고, 상피세포가 나노구조의 표면 특성에 의해 중간엽 세포로 전환되는 것을 확인했다고 지난 18일 밝혔다.

암으로 인한 사망원인의 90% 이상은 원발성 암 부위로부터 멀리 떨어진 곳으로 전이가 일어나는 것에 기인한다. 수술 등 치료법이 발달하고 항암제가 개발되면서 생존율은 높아지고 있지만 아직까지 재발, 전이된 암에서 효과적인 치료제가 없는 상황이며, 특히, 치료 실패의 주요 원인 중 하나가 치료제 내성이나 암세포의 전이를 유도하는 것으로 보고되고 있는 상피간엽이행(Epithelial-Mesenchymal Transition: EMT) 현상이다.

대부분의 고형암은 상피세포에서 기원하는데, EMT 현상은 상피세포였던 암세포가 중간엽 세포로 변하는 현상으로 이 과정을 통해 세포가 이동성과 침윤성을 획득해 암세포의 전이를 촉진한다. EMT 특성이 강한 암세포는 면역관문억제제 역시 잘 듣지 않는 것으로 알려져 있으며, 치료제 내성이나 암세포의 전이를 유도하는 것으로 보고되고 있다. 최근 EMT를 억제하거나 EMT를 유도함으로써 임상적으로 적용하여 새로운 항암전략을 수립하고자 하는 많은 시도들이 있으며, 특히, EMT 분자아형(molecular subtype) 위암에 대한 효과적인 치료표적과 동반진단 마커 발굴과 EMT 유도 세포를 이용해 표적 항암물질 개발을 위한 노력이 대표적이다.

EMT 과정 중 세포는 형태적 변형과 같은 물리적 특성과 생물 지표의 증감으로 구별이 가능하다. 연구팀은 금(gold) 나노선 어레이에서 성장하는 세포외곽의 미세구조를 전자현미경(SEM), 원자힘 현미경(AFM) 등으로 분석했고, 형광현미경으로 세포 초점 접착에 관여하는 단백질 분포를 확인하여 금 나노선 어레이에서 성장하는 세포의 형태적인 특징과 세포 내부의 분자적 특징이 연관되어 있음을 확인했다. 세포 형태 변형에 따른 내분 분자의 변화는 EMT과정의 생물지표인 비멘틴(vimentin)의 증가와 E-cadherin의 감소로 확인되며, 이는 세포의 초점 접착 변화가 EMT를 유도할 수 있다는 근거이다.

김영근 고려대 교수는 “이번 연구는 암세포의 EMT를 유도하는 환경을 구체화하여 암 전이와 관련된 생물학적 기능을 이해하는데 유용하며, EMT 유도 미세 환경을 구현하여 진단 및 항암제를 개발하는 새로운 전략을 제공할 수 있다. EMT 현상이 일어날 때에는 특정 생리활성 물질에 대한 의존성이 있으며 생리활성 물질의 기능을 억제하는 방식으로 EMT 활성이 강한 암세포를 선택적으로 제거할 수 있는 항암 치료법 개발이 가능하다.”라고 설명했다.

이번 연구 성과는 한국연구재단 중견연구자 지원사업과 이공학 개인기초 연구지원사업의 지원으로 수행됐으며, 연구결과는 재료과학 분야 최고 권위의 국제학술지인 어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials) 12월 3일자로 게재됐다.

Association between Cell Microenvironment Altered by Gold Nanowire Array and Regulation of Partial Epithelial-Mesenchymal Transition
Advanced Functional Materials 31 2008758 (2020)
[DOI: https://doi.org/10.1002/adfm.202008758]

Cell microenvironment is an essential factor in determining cell growth and cell fate. Many studies have been carried out to understand the functions and mechanisms of small molecules or growth factors/cytokines; however, the effects of the physical environment on cells are relatively unknown. Changes in the cell’s physical microenvironment affect cell adhesion and modify intracellular signaling controlled by adhesion properties, resulting in altering the cytoskeletal structure and cellular properties. Herein, it is demonstrated that the changes in cell adhesion can affect the epithelial-mesenchymal transition (EMT) of epithelial cells by implementing a cell microenvironment with a gold (Au) nanowire array to influence cell adhesion. A forcible decrease in cell adhesion leads to the downregulation of epithelial biomarkers and the upregulation of mesenchymal biomarkers. The results of force-distance experiments using atomic force microscopy showed that the overall stiffness of epithelial cells declined similarly to the case for mesenchymal-like cells. With this comprehensive analysis of cellular properties, a physical microenvironment for cell adhesion alteration is suggested, that can induce mesenchymal characteristics in both epithelial and mesenchymal cells through partial EMT.

고려대 연구팀, 생체 내 나노코딩 제어 시스템 세계 최초 개발

고려대학교는 신소재공학부 강희민·김영근 교수 연구팀이 임플란트 소재 표면에서 줄기세포의 부착과 분화를 조절할 수 있는 생체 내 나노코딩 제어 시스템을 세계 최초로 개발했다고 27일 밝혔다.

신소재공학부 김영근 교수와 강희민 교수는 "나노바코드를 이용한 리간드 주기성과 배열순서의 정밀한 코딩 제어 시스템 개발로 임플란트 소재의 생체내 줄기세포의 제어 가능성을 검증했다"면서 "이로써 향후 환자 맞춤형 재생·면역치료 분야에 적용할 수 있을 것으로 기대한다"고 말했다.

이번 연구 논문은 세계적인 국제학술지 `Advanced Materials (Impact Factor: 27.398)`(21일자)에 게재됐다.

 

Remote control of  Time-Regulated Stretching of Ligand Presenting Nanocoils In Situ Regulates the Cyclic Adhesion and Differentiation of Stem Cells
Advanced Materials 2008353 (2021) [doi: 10.1002/adma.202008353]

Native extracellular matrix (ECM) can exhibit cyclic nanoscale stretching and shrinking of ligands to regulate complex cell–material interactions. Designing materials that allow cyclic control of changes in intrinsic ligand-presenting nanostructures in situ can emulate ECM dynamicity to regu-late cellular adhesion. Unprecedented remote control of rapid, cyclic, and mechanical stretching (“ON”) and shrinking (“OFF”) of cell-adhesive RGD ligand-presenting magnetic nanocoils on a material surface in five repeated cycles are reported, thereby independently increasing and decreasing ligand pitch in nanocoils, respectively, without modulating ligand-presenting surface area per nanocoil. It is demonstrated that cyclic switching “ON” (ligand nanostretching) facilitates time-regulated integrin ligation, focal adhesion, spreading, YAP/TAZ mechanosensing, and dierentiation of viable stem cells, both in vitro and in vivo. Fluorescence resonance energy transfer (FRET) imaging reveals magnetic switching “ON” (stretching) and “OFF” (shrinking) of the nanocoils inside animals. Versatile tuning of physical dimensions and elements of nanocoils by regulating electrodeposition conditions is also demonstrated. The study sheds novel insight into designing materials with connected ligand nanostructures that exhibit nanocoil-specific nano-spaced declustering, which is ineective in nanowires, to facilitate cell adhesion. This unprecedented, independent, remote, and cytocompatible control of ligand nanopitch is promising for regulating the mechanosensing-mediated dieren-tiation of stem cells in vivo.

조성진, "고려대 연구팀, 생체 내 나노코딩 제어 시스템 세계 최초 개발", 매일경제 MBN, 2020년 08월 27일, https://www.mk.co.kr/news/it/view/2020/08/883751/

속도·에너지 극대화 `자기메모리` 상용화 성큼

▲ 왼쪽부터 김영근 교수, 김용진 박사(공동제1저자), 이민혁 석박사통합과정(공동제1저자)

국내 연구진이 차세대 메모리로 불리는 자기메모리의 상용화를 한 단계 앞당긴 연구 성과를 내놨다.

김영근 고려대 신소재공학부 교수와 같은 학과 이민혁 연구원 공동 연구진은 차세대 자기메모리의 전류를 저감할 수 있는 소재 기술을 개발했다고 15일 밝혔다.

자성메모리는 자석 성질을 갖고 있는 물질과 그렇지 않은 물질이 차곡차곡 쌓인 형태로 이뤄져 있다. 자성층의 자성 방향, 즉 N극과 S극이 바뀌면서 정보가 저장되는데 이처럼 N극과 S극을 바꾸는 기술을 `스핀궤도토크`라고 한다. 그런데 스핀궤도토크를 위해서는 기존 메모리 대비 5배 이상 많은 전류를 흘려줘야만 했다. 그만큼 비용이 증가해 상용화의 걸림돌로 작용했다. 김 교수 연구진은 자성메모리를 구성하고 있는 층 사이에 텅스텐 기반의 소재를 넣음으로써 전류를 낮추는 데 성공했다.

 

Large reduction in switching current driven by spin-orbit torque in W/CoFeB heterostructures with W–N interfacial layers
Acta Materialia 200, 551–558 (2020) [doi: 10.1016/j.actamat.2020.09.032]


Injecting an electrical current into a nonmagnetic layer toward the in-plane direction can reverse the magnetization direction of an adjacent ferromagnetic layer in a nonmagnet/ferromagnet heterostructure via spin-orbit torque (SOT). One of the most critical issues for memory and logic device applications is to reduce the critical current to assure low energy consumption. Herein, we report both enhanced SOT effi- ciency and reduced SOT-induced switching current in perpendicularly magnetized W/CoFeB heterostruc- tures, where ultrathin tungsten nitride (W–N) layers with various N-compositions and thicknesses are placed in between W and CoFeB layers. The composition of the W–N layers affects the microstructure and, therefore, the electrical properties. The measured SOT efficiency is 0.54, and the switching current reduces to approximately one-fifth of its original value in the 0.2-nm-thick W–N layer sample containing 42 at% N. Our results suggest interface engineering is a practical approach to reduce switching current. 

 

이새봄, "[과학] 속도·에너지 극대화 `자기메모리` 상용화 성큼", 매일경제, 2020년 12월 16일, https://www.mk.co.kr/news/it/view/2020/12/1288460/